Pentahexagonal tiling

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Pentahexagonal tiling
Pentahexagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration (5.62
Schläfli symbol r{6,5} or
Wythoff symbol 2 | 6 5
Coxeter diagram CDel node.pngCDel 6.pngCDel node 1.pngCDel 5.pngCDel node.png
Symmetry group [6,5], (*652)
Dual Order-6-5 rhombille tiling
Properties Vertex-transitive edge-transitive

In geometry, the pentahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of r{6,5} or t1{6,5}.

Uniform colorings[edit]

H2 tiling 355-5.png

Related polyhedra and tiling[edit]

References[edit]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also[edit]

External links[edit]