Wikispecies
Wikispecies is a wiki-based online project supported by the Wikimedia Foundation. Its aim is to create a comprehensive free content catalogue of all species. Jimmy Wales stated that editors are not required to fax in their degrees, but that submissions will have to pass muster with a technical audience. Wikispecies is available under the GNU Free Documentation License and CC BY-SA 3.0. Started in September 2004, with biologists across the world invited to contribute, the project had grown a framework encompassing the Linnaean taxonomy with links to Wikipedia articles on individual species by April 2005. Benedikt Mandl co-ordinated the efforts of several people who are interested in getting involved with the project and contacted potential supporters in early summer 2004. Databases were evaluated and the administrators contacted, some of them have agreed on providing their data for Wikispecies. Mandl defined two major tasks: Figure out how the contents of the data base would need to be presented—by asking experts, potential non-professional users and comparing that with existing databases Figure out how to do the software, which hardware is required and how to cover the costs—by asking experts, looking for fellow volunteers and potential sponsorsAdvantages and disadvantages were discussed by the wikimedia-I mailing list.
The board of directors of the Wikimedia Foundation voted by 4 to 0 in favor of the establishment of a Wikispecies. The project is hosted at species.wikimedia.org. It was merged to a sister project of Wikimedia Foundation on September 14, 2004. On October 10, 2006, the project exceeded 75,000 articles. On May 20, 2007, the project exceeded 100,000 articles with a total of 5,495 registered users. On September 8, 2008, the project exceeded 150,000 articles with a total of 9,224 registered users. On October 23, 2011, the project reached 300,000 articles. On June 16, 2014, the project reached 400,000 articles. On January 7, 2017, the project reached 500,000 articles. On October 30, 2018, the project reached 600,000 articles, a total of 1.12 million pages. Wikispecies comprises taxon pages, additionally pages about synonyms, taxon authorities, taxonomical publications, institutions or repositories holding type specimen. Wikispecies asks users to use images from Wikimedia Commons. Wikispecies does not allow the use of content.
All Species Foundation Catalogue of Life Encyclopedia of Life Tree of Life Web Project List of online encyclopedias The Plant List Wikispecies, The free species directory that anyone can edit Species Community Portal The Wikispecies Charter, written by Wales
Hypsogastropoda
Hypsogastropoda is a clade containing marine gastropods within the clade Caenogastropoda. This clade contains two clades and one informal group: Clade Littorinimorpha Informal group Ptenoglossa Clade Neogastropoda Murray-Darling Freshwater Research Centre. Hypsogastropoda
Animal
Animals are multicellular eukaryotic organisms that form the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, grow from a hollow sphere of cells, the blastula, during embryonic development. Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 millionths of a metre to 33.6 metres and have complex interactions with each other and their environments, forming intricate food webs. The category includes humans, but in colloquial use the term animal refers only to non-human animals; the study of non-human animals is known as zoology. Most living animal species are in the Bilateria, a clade whose members have a bilaterally symmetric body plan; the Bilateria include the protostomes—in which many groups of invertebrates are found, such as nematodes and molluscs—and the deuterostomes, containing the echinoderms and chordates.
Life forms interpreted. Many modern animal phyla became established in the fossil record as marine species during the Cambrian explosion which began around 542 million years ago. 6,331 groups of genes common to all living animals have been identified. Aristotle divided animals into those with those without. Carl Linnaeus created the first hierarchical biological classification for animals in 1758 with his Systema Naturae, which Jean-Baptiste Lamarck expanded into 14 phyla by 1809. In 1874, Ernst Haeckel divided the animal kingdom into the multicellular Metazoa and the Protozoa, single-celled organisms no longer considered animals. In modern times, the biological classification of animals relies on advanced techniques, such as molecular phylogenetics, which are effective at demonstrating the evolutionary relationships between animal taxa. Humans make use of many other animal species for food, including meat and eggs. Dogs have been used in hunting, while many aquatic animals are hunted for sport.
Non-human animals have appeared in art from the earliest times and are featured in mythology and religion. The word "animal" comes from the Latin animalis, having soul or living being; the biological definition includes all members of the kingdom Animalia. In colloquial usage, as a consequence of anthropocentrism, the term animal is sometimes used nonscientifically to refer only to non-human animals. Animals have several characteristics. Animals are eukaryotic and multicellular, unlike bacteria, which are prokaryotic, unlike protists, which are eukaryotic but unicellular. Unlike plants and algae, which produce their own nutrients animals are heterotrophic, feeding on organic material and digesting it internally. With few exceptions, animals breathe oxygen and respire aerobically. All animals are motile during at least part of their life cycle, but some animals, such as sponges, corals and barnacles become sessile; the blastula is a stage in embryonic development, unique to most animals, allowing cells to be differentiated into specialised tissues and organs.
All animals are composed of cells, surrounded by a characteristic extracellular matrix composed of collagen and elastic glycoproteins. During development, the animal extracellular matrix forms a flexible framework upon which cells can move about and be reorganised, making the formation of complex structures possible; this may be calcified, forming structures such as shells and spicules. In contrast, the cells of other multicellular organisms are held in place by cell walls, so develop by progressive growth. Animal cells uniquely possess the cell junctions called tight junctions, gap junctions, desmosomes. With few exceptions—in particular, the sponges and placozoans—animal bodies are differentiated into tissues; these include muscles, which enable locomotion, nerve tissues, which transmit signals and coordinate the body. There is an internal digestive chamber with either one opening or two openings. Nearly all animals make use of some form of sexual reproduction, they produce haploid gametes by meiosis.
These fuse to form zygotes, which develop via mitosis into a hollow sphere, called a blastula. In sponges, blastula larvae swim to a new location, attach to the seabed, develop into a new sponge. In most other groups, the blastula undergoes more complicated rearrangement, it first invaginates to form a gastrula with a digestive chamber and two separate germ layers, an external ectoderm and an internal endoderm. In most cases, a third germ layer, the mesoderm develops between them; these germ layers differentiate to form tissues and organs. Repeated instances of mating with a close relative during sexual reproduction leads to inbreeding depression within a population due to the increased prevalence of harmful recessive traits. Animals have evolved numerous mechanisms for avoiding close inbreeding. In some species, such as the splendid fairywren, females benefit by mating with multiple males, thus producing more offspring of higher genetic quality; some animals are capable of asexual reproduction, which results
Type species
In zoological nomenclature, a type species is the species name with which the name of a genus or subgenus is considered to be permanently taxonomically associated, i.e. the species that contains the biological type specimen. A similar concept is used for suprageneric groups called a type genus. In botanical nomenclature, these terms have no formal standing under the code of nomenclature, but are sometimes borrowed from zoological nomenclature. In botany, the type of a genus name is a specimen, the type of a species name; the species name that has that type can be referred to as the type of the genus name. Names of genus and family ranks, the various subdivisions of those ranks, some higher-rank names based on genus names, have such types. In bacteriology, a type species is assigned for each genus; every named genus or subgenus in zoology, whether or not recognized as valid, is theoretically associated with a type species. In practice, there is a backlog of untypified names defined in older publications when it was not required to specify a type.
A type species is both a concept and a practical system, used in the classification and nomenclature of animals. The "type species" represents the reference species and thus "definition" for a particular genus name. Whenever a taxon containing multiple species must be divided into more than one genus, the type species automatically assigns the name of the original taxon to one of the resulting new taxa, the one that includes the type species; the term "type species" is regulated in zoological nomenclature by article 42.3 of the International Code of Zoological Nomenclature, which defines a type species as the name-bearing type of the name of a genus or subgenus. In the Glossary, type species is defined as The nominal species, the name-bearing type of a nominal genus or subgenus; the type species permanently attaches a formal name to a genus by providing just one species within that genus to which the genus name is permanently linked. The species name in turn is fixed, to a type specimen. For example, the type species for the land snail genus Monacha is Helix cartusiana, the name under which the species was first described, known as Monacha cartusiana when placed in the genus Monacha.
That genus is placed within the family Hygromiidae. The type genus for that family is the genus Hygromia; the concept of the type species in zoology was introduced by Pierre André Latreille. The International Code of Zoological Nomenclature states that the original name of the type species should always be cited, it gives an example in Article 67.1. Astacus marinus Fabricius, 1775 was designated as the type species of the genus Homarus, thus giving it the name Homarus marinus. However, the type species of Homarus should always be cited using its original name, i.e. Astacus marinus Fabricius, 1775. Although the International Code of Nomenclature for algae and plants does not contain the same explicit statement, examples make it clear that the original name is used, so that the "type species" of a genus name need not have a name within that genus, thus in Article 10, Ex. 3, the type of the genus name Elodes is quoted as the type of the species name Hypericum aegypticum, not as the type of the species name Elodes aegyptica.
Glossary of scientific naming Genetypes – genetic sequence data from type specimens. Holotype Paratype Principle of Typification Type Type genus
Antillophos grateloupianus
Antillophos grateloupianus is a species of sea snail, a marine gastropod mollusk in the family Buccinidae, the true whelks. Gofas, S.. P.. Conchas e Moluscos de Angola = Coquillages et Mollusques d'Angola.. Universidade Agostinho / Elf Aquitaine Angola: Angola. 140 pp. Bernard, P. A.. Coquillages du Gabon. Pierre A. Bernard: Libreville, Gabon. 140, 75 plates pp
Fossilworks
Fossilworks is a portal which provides query and analysis tools to facilitate access to the Paleobiology Database, a large relational database assembled by hundreds of paleontologists from around the world. Fossilworks is housed at Macquarie University, it includes many analysis and data visualization tools included in the Paleobiology Database. "Fossilworks". Retrieved 2010-04-08
Mollusca
Mollusca is the second largest phylum of invertebrate animals. The members are known as mollusks. Around 85,000 extant species of molluscs are recognized; the number of fossil species is estimated between 100,000 additional species. Molluscs are the largest marine phylum, comprising about 23% of all the named marine organisms. Numerous molluscs live in freshwater and terrestrial habitats, they are diverse, not just in size and in anatomical structure, but in behaviour and in habitat. The phylum is divided into 8 or 9 taxonomic classes, of which two are extinct. Cephalopod molluscs, such as squid and octopus, are among the most neurologically advanced of all invertebrates—and either the giant squid or the colossal squid is the largest known invertebrate species; the gastropods are by far the most numerous molluscs and account for 80% of the total classified species. The three most universal features defining modern molluscs are a mantle with a significant cavity used for breathing and excretion, the presence of a radula, the structure of the nervous system.
Other than these common elements, molluscs express great morphological diversity, so many textbooks base their descriptions on a "hypothetical ancestral mollusc". This has a single, "limpet-like" shell on top, made of proteins and chitin reinforced with calcium carbonate, is secreted by a mantle covering the whole upper surface; the underside of the animal consists of a single muscular "foot". Although molluscs are coelomates, the coelom tends to be small; the main body cavity is a hemocoel. The "generalized" mollusc's feeding system consists of a rasping "tongue", the radula, a complex digestive system in which exuded mucus and microscopic, muscle-powered "hairs" called cilia play various important roles; the generalized mollusc has three in bivalves. The brain, in species that have one, encircles the esophagus. Most molluscs have eyes, all have sensors to detect chemicals and touch; the simplest type of molluscan reproductive system relies on external fertilization, but more complex variations occur.
All produce eggs, from which may emerge trochophore larvae, more complex veliger larvae, or miniature adults. The coelomic cavity is reduced, they have kidney-like organs for excretion. Good evidence exists for the appearance of gastropods and bivalves in the Cambrian period, 541 to 485.4 million years ago. However, the evolutionary history both of molluscs' emergence from the ancestral Lophotrochozoa and of their diversification into the well-known living and fossil forms are still subjects of vigorous debate among scientists. Molluscs still are an important food source for anatomically modern humans. There is a risk of food poisoning from toxins which can accumulate in certain molluscs under specific conditions and because of this, many countries have regulations to reduce this risk. Molluscs have, for centuries been the source of important luxury goods, notably pearls, mother of pearl, Tyrian purple dye, sea silk, their shells have been used as money in some preindustrial societies. Mollusc species can represent hazards or pests for human activities.
The bite of the blue-ringed octopus is fatal, that of Octopus apollyon causes inflammation that can last for over a month. Stings from a few species of large tropical cone shells can kill, but their sophisticated, though produced, venoms have become important tools in neurological research. Schistosomiasis is transmitted to humans via water snail hosts, affects about 200 million people. Snails and slugs can be serious agricultural pests, accidental or deliberate introduction of some snail species into new environments has damaged some ecosystems; the words mollusc and mollusk are both derived from the French mollusque, which originated from the Latin molluscus, from mollis, soft. Molluscus was itself an adaptation of Aristotle's τὰ μαλάκια ta malákia, which he applied inter alia to cuttlefish; the scientific study of molluscs is accordingly called malacology. The name Molluscoida was used to denote a division of the animal kingdom containing the brachiopods and tunicates, the members of the three groups having been supposed to somewhat resemble the molluscs.
As it is now known these groups have no relation to molluscs, little to one another, the name Molluscoida has been abandoned. The most universal features of the body structure of molluscs are a mantle with a significant cavity used for breathing and excretion, the organization of the nervous system. Many have a calcareous shell. Molluscs have developed such a varied range of body structures, it is difficult to find synapomorphies to apply to all modern groups; the most general characteristic of molluscs is they are bilaterally symmetrical. The following are present in all modern molluscs: The dorsal part of the body wall is a mantle which secretes calcareous spicules, plates or shells, it overlaps the body with enough spare room to form a mantle cavity. The anus and genitals open into the mantle cavity. There are two pairs of main nerve cords. Other characteristics that appear in textbooks have significant exceptions: Estimates of accepted described living species of molluscs vary from 50,000 to a maximum of 120,000 species.
In 1969 David Nicol estimated the probable total number of living mollusc species at 107,000 of which were ab