1.
Melting point
–
The melting point of a solid is the temperature at which it changes state from solid to liquid at atmospheric pressure. At the melting point the solid and liquid phase exist in equilibrium, the melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the change from liquid to solid. Because of the ability of some substances to supercool, the point is not considered as a characteristic property of a substance. For most substances, melting and freezing points are approximately equal, for example, the melting point and freezing point of mercury is 234.32 kelvins. However, certain substances possess differing solid-liquid transition temperatures, for example, agar melts at 85 °C and solidifies from 31 °C to 40 °C, such direction dependence is known as hysteresis. The melting point of ice at 1 atmosphere of pressure is close to 0 °C. In the presence of nucleating substances the freezing point of water is the same as the melting point, the chemical element with the highest melting point is tungsten, at 3687 K, this property makes tungsten excellent for use as filaments in light bulbs. Many laboratory techniques exist for the determination of melting points, a Kofler bench is a metal strip with a temperature gradient. Any substance can be placed on a section of the strip revealing its thermal behaviour at the temperature at that point, differential scanning calorimetry gives information on melting point together with its enthalpy of fusion. A basic melting point apparatus for the analysis of crystalline solids consists of an oil bath with a transparent window, the several grains of a solid are placed in a thin glass tube and partially immersed in the oil bath. The oil bath is heated and with the aid of the melting of the individual crystals at a certain temperature can be observed. In large/small devices, the sample is placed in a heating block, the measurement can also be made continuously with an operating process. For instance, oil refineries measure the point of diesel fuel online, meaning that the sample is taken from the process. This allows for more frequent measurements as the sample does not have to be manually collected, for refractory materials the extremely high melting point may be determined by heating the material in a black body furnace and measuring the black-body temperature with an optical pyrometer. For the highest melting materials, this may require extrapolation by several hundred degrees, the spectral radiance from an incandescent body is known to be a function of its temperature. An optical pyrometer matches the radiance of a body under study to the radiance of a source that has been previously calibrated as a function of temperature, in this way, the measurement of the absolute magnitude of the intensity of radiation is unnecessary. However, known temperatures must be used to determine the calibration of the pyrometer, for temperatures above the calibration range of the source, an extrapolation technique must be employed
2.
Bisphenol A
–
Bisphenol A is an organic synthetic compound with the chemical formula 2C2 belonging to the group of diphenylmethane derivatives and bisphenols, with two hydroxyphenyl groups. It is a solid that is soluble in organic solvents. It has been in use since 1957. BPA is employed to make certain plastics and epoxy resins, bPA-based plastic is clear and tough, and is made into a variety of common consumer goods, such as water bottles, sports equipment, CDs, and DVDs. Epoxy resins containing BPA are used to water pipes, as coatings on the inside of many food and beverage cans. In 2015, an estimated 4 million tonnes of BPA chemical were produced for manufacturing polycarbonate plastic, BPA exhibits estrogen mimicking, hormone-like properties that raise concern about its suitability in some consumer products and food containers. Since 2008, several governments have investigated its safety, which prompted some retailers to withdraw polycarbonate products. The U. S. Food and Drug Administration has ended its authorization of the use of BPA in baby bottles and infant formula packaging, based on market abandonment, the European Union and Canada have banned BPA use in baby bottles. The FDA states BPA is safe at the current levels occurring in foods based on extensive research, in February 2016, France announced that it intends to propose BPA as a REACH Regulation candidate substance of very high concern. World production capacity of Bisphenol A was 1 million tons in the 1980s and it is a high production volume chemical. In 2003, U. S. consumption was 856,000 tons, 72% of which used to make polycarbonate plastic and 21% going into epoxy resins. In the U. S. less than 5% of the BPA produced is used in food contact applications, Bisphenol A was first synthesized by the Russian chemist Alexander Dianin in 1891. This compound is synthesized by the condensation of acetone with two equivalents of phenol, the reaction is catalyzed by a strong acid, such as hydrochloric acid or a sulfonated polystyrene resin. Bisphenol A is used primarily to make plastics, and products using bisphenol A-based plastics have been in use since 1957. At least 3.6 million tonnes of BPA are used by manufacturers yearly and it is a key monomer in production of epoxy resins and in the most common form of polycarbonate plastic. Bisphenol A and phosgene react to give polycarbonate under biphasic conditions, phenol is eliminated instead of hydrochloric acid. This transesterification process avoids the toxicity and handling of phosgene, BPA is also used in the synthesis of polysulfones and polyether ketones, as an antioxidant in some plasticizers, and as a polymerization inhibitor in PVC. Bisphenol A is also a precursor to the flame retardant tetrabromobisphenol A, Bisphenol A is a preferred color developer in carbonless copy paper and thermal point of sale receipt paper
3.
Jmol
–
Jmol is computer software for molecular modelling chemical structures in 3-dimensions. Jmol returns a 3D representation of a molecule that may be used as a teaching tool and it is written in the programming language Java, so it can run on the operating systems Windows, macOS, Linux, and Unix, if Java is installed. It is free and open-source software released under a GNU Lesser General Public License version 2.0, a standalone application and a software development kit exist that can be integrated into other Java applications, such as Bioclipse and Taverna. A popular feature is an applet that can be integrated into web pages to display molecules in a variety of ways, for example, molecules can be displayed as ball-and-stick models, space-filling models, ribbon diagrams, etc. Jmol supports a range of chemical file formats, including Protein Data Bank, Crystallographic Information File, MDL Molfile. There is also a JavaScript-only version, JSmol, that can be used on computers with no Java, the Jmol applet, among other abilities, offers an alternative to the Chime plug-in, which is no longer under active development. While Jmol has many features that Chime lacks, it does not claim to reproduce all Chime functions, most notably, Chime requires plug-in installation and Internet Explorer 6.0 or Firefox 2.0 on Microsoft Windows, or Netscape Communicator 4.8 on Mac OS9. Jmol requires Java installation and operates on a variety of platforms. For example, Jmol is fully functional in Mozilla Firefox, Internet Explorer, Opera, Google Chrome, fast and Scriptable Molecular Graphics in Web Browsers without Java3D
4.
Organic chemistry
–
Study of structure includes many physical and chemical methods to determine the chemical composition and the chemical constitution of organic compounds and materials. In the modern era, the range extends further into the table, with main group elements, including, Group 1 and 2 organometallic compounds. They either form the basis of, or are important constituents of, many products including pharmaceuticals, petrochemicals and products made from them, plastics, fuels and explosives. Before the nineteenth century, chemists generally believed that compounds obtained from living organisms were endowed with a force that distinguished them from inorganic compounds. According to the concept of vitalism, organic matter was endowed with a vital force, during the first half of the nineteenth century, some of the first systematic studies of organic compounds were reported. Around 1816 Michel Chevreul started a study of soaps made from various fats and he separated the different acids that, in combination with the alkali, produced the soap. Since these were all compounds, he demonstrated that it was possible to make a chemical change in various fats, producing new compounds. In 1828 Friedrich Wöhler produced the chemical urea, a constituent of urine, from inorganic starting materials. The event is now accepted as indeed disproving the doctrine of vitalism. In 1856 William Henry Perkin, while trying to manufacture quinine accidentally produced the organic dye now known as Perkins mauve and his discovery, made widely known through its financial success, greatly increased interest in organic chemistry. A crucial breakthrough for organic chemistry was the concept of chemical structure, ehrlich popularized the concepts of magic bullet drugs and of systematically improving drug therapies. His laboratory made decisive contributions to developing antiserum for diphtheria and standardizing therapeutic serums, early examples of organic reactions and applications were often found because of a combination of luck and preparation for unexpected observations. The latter half of the 19th century however witnessed systematic studies of organic compounds, the development of synthetic indigo is illustrative. The production of indigo from plant sources dropped from 19,000 tons in 1897 to 1,000 tons by 1914 thanks to the methods developed by Adolf von Baeyer. In 2002,17,000 tons of indigo were produced from petrochemicals. In the early part of the 20th Century, polymers and enzymes were shown to be large organic molecules, the multiple-step synthesis of complex organic compounds is called total synthesis. Total synthesis of natural compounds increased in complexity to glucose. For example, cholesterol-related compounds have opened ways to synthesize complex human hormones, since the start of the 20th century, complexity of total syntheses has been increased to include molecules of high complexity such as lysergic acid and vitamin B12
5.
European Chemicals Agency
–
ECHA is the driving force among regulatory authorities in implementing the EUs chemicals legislation. ECHA helps companies to comply with the legislation, advances the safe use of chemicals, provides information on chemicals and it is located in Helsinki, Finland. The Agency, headed by Executive Director Geert Dancet, started working on 1 June 2007, the REACH Regulation requires companies to provide information on the hazards, risks and safe use of chemical substances that they manufacture or import. Companies register this information with ECHA and it is freely available on their website. So far, thousands of the most hazardous and the most commonly used substances have been registered, the information is technical but gives detail on the impact of each chemical on people and the environment. This also gives European consumers the right to ask whether the goods they buy contain dangerous substances. The Classification, Labelling and Packaging Regulation introduces a globally harmonised system for classifying and labelling chemicals into the EU. This worldwide system makes it easier for workers and consumers to know the effects of chemicals, companies need to notify ECHA of the classification and labelling of their chemicals. So far, ECHA has received over 5 million notifications for more than 100000 substances, the information is freely available on their website. Consumers can check chemicals in the products they use, Biocidal products include, for example, insect repellents and disinfectants used in hospitals. The Biocidal Products Regulation ensures that there is information about these products so that consumers can use them safely. ECHA is responsible for implementing the regulation, the law on Prior Informed Consent sets guidelines for the export and import of hazardous chemicals. Through this mechanism, countries due to hazardous chemicals are informed in advance and have the possibility of rejecting their import. Substances that may have effects on human health and the environment are identified as Substances of Very High Concern 1. These are mainly substances which cause cancer, mutation or are toxic to reproduction as well as substances which persist in the body or the environment, other substances considered as SVHCs include, for example, endocrine disrupting chemicals. Companies manufacturing or importing articles containing these substances in a concentration above 0 and they are required to inform users about the presence of the substance and therefore how to use it safely. Consumers have the right to ask the retailer whether these substances are present in the products they buy, once a substance has been officially identified in the EU as being of very high concern, it will be added to a list. This list is available on ECHA’s website and shows consumers and industry which chemicals are identified as SVHCs, Substances placed on the Candidate List can then move to another list
6.
Boiling point
–
The boiling point of a substance is the temperature at which the vapor pressure of the liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the environmental pressure. A liquid in a vacuum has a lower boiling point than when that liquid is at atmospheric pressure. A liquid at high pressure has a boiling point than when that liquid is at atmospheric pressure. For a given pressure, different liquids boil at different temperatures, for example, water boils at 100 °C at sea level, but at 93.4 °C at 2,000 metres altitude. The normal boiling point of a liquid is the case in which the vapor pressure of the liquid equals the defined atmospheric pressure at sea level,1 atmosphere. At that temperature, the pressure of the liquid becomes sufficient to overcome atmospheric pressure. The standard boiling point has been defined by IUPAC since 1982 as the temperature at which boiling occurs under a pressure of 1 bar, the heat of vaporization is the energy required to transform a given quantity of a substance from a liquid into a gas at a given pressure. Liquids may change to a vapor at temperatures below their boiling points through the process of evaporation, evaporation is a surface phenomenon in which molecules located near the liquids edge, not contained by enough liquid pressure on that side, escape into the surroundings as vapor. On the other hand, boiling is a process in which molecules anywhere in the liquid escape, a saturated liquid contains as much thermal energy as it can without boiling. The saturation temperature is the temperature for a corresponding saturation pressure at which a liquid boils into its vapor phase, the liquid can be said to be saturated with thermal energy. Any addition of energy results in a phase transition. If the pressure in a system remains constant, a vapor at saturation temperature will begin to condense into its liquid phase as thermal energy is removed, similarly, a liquid at saturation temperature and pressure will boil into its vapor phase as additional thermal energy is applied. The boiling point corresponds to the temperature at which the pressure of the liquid equals the surrounding environmental pressure. Thus, the point is dependent on the pressure. Boiling points may be published with respect to the NIST, USA standard pressure of 101.325 kPa, at higher elevations, where the atmospheric pressure is much lower, the boiling point is also lower. The boiling point increases with increased pressure up to the critical point, the boiling point cannot be increased beyond the critical point. Likewise, the point decreases with decreasing pressure until the triple point is reached
7.
Density
–
The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume, ρ = m V, where ρ is the density, m is the mass, and V is the volume. In some cases, density is defined as its weight per unit volume. For a pure substance the density has the numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity, osmium and iridium are the densest known elements at standard conditions for temperature and pressure but certain chemical compounds may be denser. Thus a relative density less than one means that the floats in water. The density of a material varies with temperature and pressure and this variation is typically small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object, increasing the temperature of a substance decreases its density by increasing its volume. In most materials, heating the bottom of a results in convection of the heat from the bottom to the top. This causes it to rise relative to more dense unheated material, the reciprocal of the density of a substance is occasionally called its specific volume, a term sometimes used in thermodynamics. Density is a property in that increasing the amount of a substance does not increase its density. Archimedes knew that the irregularly shaped wreath could be crushed into a cube whose volume could be calculated easily and compared with the mass, upon this discovery, he leapt from his bath and ran naked through the streets shouting, Eureka. As a result, the term eureka entered common parlance and is used today to indicate a moment of enlightenment, the story first appeared in written form in Vitruvius books of architecture, two centuries after it supposedly took place. Some scholars have doubted the accuracy of this tale, saying among other things that the method would have required precise measurements that would have been difficult to make at the time, from the equation for density, mass density has units of mass divided by volume. As there are units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per metre and the cgs unit of gram per cubic centimetre are probably the most commonly used units for density.1,000 kg/m3 equals 1 g/cm3. In industry, other larger or smaller units of mass and or volume are often more practical, see below for a list of some of the most common units of density
8.
Flash point
–
The flash point is the lowest temperature at which vapours of a volatile material will ignite, when given an ignition source. The flash point may sometimes be confused with the autoignition temperature, the fire point is the lowest temperature at which the vapor will keep burning after being ignited and the ignition source removed. The fire point is higher than the point, because at the flash point the vapor may be reliably expected to cease burning when the ignition source is removed. The flash point is a characteristic that is used to distinguish between flammable liquids, such as petrol, and combustible liquids, such as diesel. It is also used to characterize the fire hazards of liquids, all liquids have a specific vapor pressure, which is a function of that liquids temperature and is subject to Boyles Law. As temperature increases, vapor pressure increases, as vapor pressure increases, the concentration of vapor of a flammable or combustible liquid in the air increases. Hence, temperature determines the concentration of vapor of the liquid in the air. The flash point is the lowest temperature at which there will be enough flammable vapor to induce ignition when a source is applied. There are two types of flash point measurement, open cup and closed cup. In open cup devices, the sample is contained in a cup which is heated and, at intervals. The measured flash point will vary with the height of the flame above the liquid surface and, at sufficient height. The best-known example is the Cleveland open cup, in both these types, the cups are sealed with a lid through which the ignition source can be introduced. Closed cup testers normally give lower values for the point than open cup and are a better approximation to the temperature at which the vapour pressure reaches the lower flammable limit. The flash point is an empirical measurement rather than a physical parameter. The measured value will vary with equipment and test protocol variations, including temperature ramp rate, time allowed for the sample to equilibrate, sample volume, methods for determining the flash point of a liquid are specified in many standards. For example, testing by the Pensky-Martens closed cup method is detailed in ASTM D93, IP34, ISO2719, DIN51758, JIS K2265 and AFNOR M07-019. Determination of flash point by the Small Scale closed cup method is detailed in ASTM D3828 and D3278, EN ISO3679 and 3680, cEN/TR15138 Guide to Flash Point Testing and ISO TR29662 Guidance for Flash Point Testing cover the key aspects of flash point testing. Gasoline is a used in a spark-ignition engine
9.
Safety data sheet
–
A safety data sheet, material safety data sheet, or product safety data sheet is an important component of product stewardship, occupational safety and health, and spill-handling procedures. SDS formats can vary from source to source within a country depending on national requirements, SDSs are a widely used system for cataloging information on chemicals, chemical compounds, and chemical mixtures. SDS information may include instructions for the use and potential hazards associated with a particular material or product. The SDS should be available for reference in the area where the chemicals are being stored or in use, there is also a duty to properly label substances on the basis of physico-chemical, health and/or environmental risk. Labels can include hazard symbols such as the European Union standard symbols, a SDS for a substance is not primarily intended for use by the general consumer, focusing instead on the hazards of working with the material in an occupational setting. It is important to use an SDS specific to country and supplier, as the same product can have different formulations in different countries. The formulation and hazard of a product using a name may vary between manufacturers in the same country. Safety data sheets have made an integral part of the system of Regulation No 1907/2006. The SDS must be supplied in a language of the Member State where the substance or mixture is placed on the market. The 16 sections are, SECTION1, Identification of the substance/mixture, relevant identified uses of the substance or mixture and uses advised against 1.3. Details of the supplier of the safety data sheet 1.4, Emergency telephone number SECTION2, Hazards identification 2.1. Classification of the substance or mixture 2.2, Other hazards SECTION3, Composition/information on ingredients 3.1. Mixtures SECTION4, First aid measures 4.1, Description of first aid measures 4.2. Most important symptoms and effects, both acute and delayed 4.3, indication of any immediate medical attention and special treatment needed SECTION5, Firefighting measures 5.1. Special hazards arising from the substance or mixture 5.3, advice for firefighters SECTION6, Accidental release measure 6.1. Personal precautions, protective equipment and emergency procedures 6.2, methods and material for containment and cleaning up 6.4. Reference to other sections SECTION7, Handling and storage 7.1, conditions for safe storage, including any incompatibilities 7.3. Specific end use SECTION8, Exposure controls/personal protection 8.1, Exposure controls SECTION9, Physical and chemical properties 9.1
10.
Soman
–
Soman, or GD, is an extremely toxic chemical substance. It is an agent, interfering with normal functioning of the mammalian nervous system by inhibiting the enzyme cholinesterase. It is an inhibitor of both acetylcholinesterase and butyrylcholinesterase, as a chemical weapon, it is classified as a weapon of mass destruction by the United Nations according to UN Resolution 687. Its production is controlled, and stockpiling is outlawed by the Chemical Weapons Convention of 1993 where it is classified as a Schedule 1 substance. Soman was the third of the so-called G-series nerve agents to be discovered along with GA, GB and it is a volatile, corrosive, and colorless liquid with a faint odor when pure. More commonly, it is a yellow to brown color and has an odor described as similar to camphor. The LCt50 for soman is 70 mg·min/m3 in humans and it is both more lethal and more persistent than sarin or tabun, but less so than cyclosarin. GD can be thickened for use as a chemical spray using an acryloid copolymer and it can also be deployed as a binary chemical weapon, its precursor chemicals are methylphosphonyl difluoride and a mixture of pinacolyl alcohol and an amine. After World War I, during which mustard gas and phosgene were used as warfare agents. Nevertheless, research into chemical warfare agents and the use of them continued, in 1936 a new, more dangerous chemical agent was discovered when Gerhard Schrader of IG Farben in Germany isolated tabun, the first nerve agent, while developing new insecticides. This discovery was followed by the isolation of sarin in 1938, during World War II, research into nerve agents continued in the United States and Germany. In summer 1944, soman, a liquid with a camphor odor, was developed by the Germans. Soman proved to be more toxic than tabun and sarin. Nobel Laureate Richard Kuhn together with Konrad Henkel discovered soman during research into the pharmacology of tabun and this research was commissioned by the German Army. Soman was produced in quantities at a pilot plant at the IG Farben factory in Ludwigshafen. It was never used in World War II, just as tabun, producing or stockpiling soman was banned by the 1993 Chemical Weapons Convention. When the convention entered force, the parties declared world-wide stockpiles of 9,057 tonnes of soman, as of December 2015, 84% of the stockpiles had been destroyed. The crystal structure of soman complexed with acetylcholinesterase was determined by Millard et al. by X-ray crystallography, Soman has a phosphonyl group with a fluoride and a hydrocarbon covalently bound to it
11.
Prins reaction
–
The Prins reaction is an organic reaction consisting of an electrophilic addition of an aldehyde or ketone to an alkene or alkyne followed by capture of a nucleophile. The outcome of the reaction depends on reaction conditions, with water and a protic acid such as sulfuric acid as the reaction medium and formaldehyde the reaction product is a 1, 3-diol. When water is absent, the intermediate loses a proton to give an allylic alcohol. With an excess of formaldehyde and a low temperature the reaction product is a dioxane. When water is replaced by acetic acid the corresponding esters are formed, the original reactants employed by Dutch chemist Hendrik Jacobus Prins in his 1919 publication were styrene, pinene, camphene, eugenol, isosafrole and anethole. In 1937 the reaction was investigated as part of a quest for di-olefins to be used in synthetic rubber, the reaction mechanism for this reaction is depicted in scheme 5. The carbonyl reactant is protonated by an acid and for the resulting oxonium ion 3 two resonance structures can be drawn. This electrophile engages in an addition with the alkene to the carbocationic intermediate 4. Exactly how much charge is present on the secondary carbon atom in this intermediate should be determined for each reaction set. Evidence exists for neighbouring group participation of the oxygen or its neighboring carbon atom. When the overall reaction has a degree of concertedness, the charge built-up will be modest. In this mode the positive charge is dispersed over oxygen and carbon in the resonance structures 8a, ring closure leads through intermediate 9 to the dioxane 10. An example is the conversion of styrene to 4-phenyl-m-dioxane. in gray, only in specific reactions, the photochemical Paternò–Büchi reaction between alkenes and aldehydes to oxetanes is more straightforward. Many variations of the Prins reaction exist because it lends itself easily to cyclization reactions, the halo-Prins reaction is one such modification with replacement of protic acids and water by lewis acids such as stannic chloride and boron tribromide. The halogen is now the nucleophile recombining with the carbocation and this observed cis diastereoselectivity is due to the intermediate formation of a trichlorotitanium alkoxide making possible an easy delivery of chlorine to the carbocation ion from the same face. The trans isomer is preferred when the switch is made to a tin tetrachloride reaction at room temperature, the Prins-pinacol reaction is a cascade reaction of a Prins reaction and a pinacol rearrangement. The carbonyl group in the reactant in scheme 8 is masked as a dimethyl acetal and the hydroxyl group is masked as a triisopropylsilyl ether. org