1.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
2.
Sphere
–
A sphere is a perfectly round geometrical object in three-dimensional space that is the surface of a completely round ball. This distance r is the radius of the ball, and the point is the center of the mathematical ball. The longest straight line through the ball, connecting two points of the sphere, passes through the center and its length is twice the radius. While outside mathematics the terms sphere and ball are used interchangeably. The ball and the share the same radius, diameter. The surface area of a sphere is, A =4 π r 2, at any given radius r, the incremental volume equals the product of the surface area at radius r and the thickness of a shell, δ V ≈ A ⋅ δ r. The total volume is the summation of all volumes, V ≈ ∑ A ⋅ δ r. In the limit as δr approaches zero this equation becomes, V = ∫0 r A d r ′, substitute V,43 π r 3 = ∫0 r A d r ′. Differentiating both sides of equation with respect to r yields A as a function of r,4 π r 2 = A. Which is generally abbreviated as, A =4 π r 2, alternatively, the area element on the sphere is given in spherical coordinates by dA = r2 sin θ dθ dφ. In Cartesian coordinates, the element is d S = r r 2 − ∑ i ≠ k x i 2 ∏ i ≠ k d x i, ∀ k. For more generality, see area element, the total area can thus be obtained by integration, A = ∫02 π ∫0 π r 2 sin θ d θ d φ =4 π r 2. In three dimensions, the volume inside a sphere is derived to be V =43 π r 3 where r is the radius of the sphere, archimedes first derived this formula, which shows that the volume inside a sphere is 2/3 that of a circumscribed cylinder. In modern mathematics, this formula can be derived using integral calculus, at any given x, the incremental volume equals the product of the cross-sectional area of the disk at x and its thickness, δ V ≈ π y 2 ⋅ δ x. The total volume is the summation of all volumes, V ≈ ∑ π y 2 ⋅ δ x. In the limit as δx approaches zero this equation becomes, V = ∫ − r r π y 2 d x. At any given x, a right-angled triangle connects x, y and r to the origin, hence, applying the Pythagorean theorem yields, thus, substituting y with a function of x gives, V = ∫ − r r π d x. Which can now be evaluated as follows, V = π − r r = π − π =43 π r 3
3.
Plane (geometry)
–
In mathematics, a plane is a flat, two-dimensional surface that extends infinitely far. A plane is the analogue of a point, a line. When working exclusively in two-dimensional Euclidean space, the article is used, so. Many fundamental tasks in mathematics, geometry, trigonometry, graph theory and graphing are performed in a space, or in other words. Euclid set forth the first great landmark of mathematical thought, a treatment of geometry. He selected a small core of undefined terms and postulates which he used to prove various geometrical statements. Although the plane in its sense is not directly given a definition anywhere in the Elements. In his work Euclid never makes use of numbers to measure length, angle, in this way the Euclidean plane is not quite the same as the Cartesian plane. This section is concerned with planes embedded in three dimensions, specifically, in R3. In a Euclidean space of any number of dimensions, a plane is determined by any of the following. A line and a point not on that line, a line is either parallel to a plane, intersects it at a single point, or is contained in the plane. Two distinct lines perpendicular to the plane must be parallel to each other. Two distinct planes perpendicular to the line must be parallel to each other. Specifically, let r0 be the vector of some point P0 =. The plane determined by the point P0 and the vector n consists of those points P, with position vector r, such that the vector drawn from P0 to P is perpendicular to n. Recalling that two vectors are perpendicular if and only if their dot product is zero, it follows that the plane can be described as the set of all points r such that n ⋅ =0. Expanded this becomes a + b + c =0, which is the form of the equation of a plane. This is just a linear equation a x + b y + c z + d =0 and this familiar equation for a plane is called the general form of the equation of the plane
4.
History of geometry
–
Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of mathematics, the other being the study of numbers. Classic geometry was focused in compass and straightedge constructions, geometry was revolutionized by Euclid, who introduced mathematical rigor and the axiomatic method still in use today. His book, The Elements is widely considered the most influential textbook of all time, the earliest recorded beginnings of geometry can be traced to early peoples, who discovered obtuse triangles in the ancient Indus Valley, and ancient Babylonia from around 3000 BC. Among these were some surprisingly sophisticated principles, and a mathematician might be hard put to derive some of them without the use of calculus. For example, both the Egyptians and the Babylonians were aware of versions of the Pythagorean theorem about 1500 years before Pythagoras and the Indian Sulba Sutras around 800 B. C. Problem 30 of the Ahmes papyrus uses these methods to calculate the area of a circle and this assumes that π is 4×², with an error of slightly over 0.63 percent. Problem 48 involved using a square with side 9 units and this square was cut into a 3x3 grid. The diagonal of the squares were used to make an irregular octagon with an area of 63 units. This gave a value for π of 3.111. The two problems together indicate a range of values for π between 3.11 and 3.16. Problem 14 in the Moscow Mathematical Papyrus gives the only ancient example finding the volume of a frustum of a pyramid, describing the correct formula, the Babylonians may have known the general rules for measuring areas and volumes. They measured the circumference of a circle as three times the diameter and the area as one-twelfth the square of the circumference, which would be correct if π is estimated as 3, the Pythagorean theorem was also known to the Babylonians. Also, there was a recent discovery in which a tablet used π as 3, the Babylonians are also known for the Babylonian mile, which was a measure of distance equal to about seven miles today. This measurement for distances eventually was converted to a used for measuring the travel of the Sun, therefore. There have been recent discoveries showing that ancient Babylonians may have discovered astronomical geometry nearly 1400 years before Europeans did, the Indian Vedic period had a tradition of geometry, mostly expressed in the construction of elaborate altars. Early Indian texts on this include the Satapatha Brahmana and the Śulba Sūtras. According to, the Śulba Sūtras contain the earliest extant verbal expression of the Pythagorean Theorem in the world, the diagonal rope of an oblong produces both which the flank and the horizontal <ropes> produce separately
5.
Euclidean geometry
–
Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry, the Elements. Euclids method consists in assuming a set of intuitively appealing axioms. Although many of Euclids results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in school as the first axiomatic system. It goes on to the geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, for more than two thousand years, the adjective Euclidean was unnecessary because no other sort of geometry had been conceived. Euclids axioms seemed so obvious that any theorem proved from them was deemed true in an absolute, often metaphysical. Today, however, many other self-consistent non-Euclidean geometries are known, Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axioms to propositions without the use of coordinates. This is in contrast to analytic geometry, which uses coordinates, the Elements is mainly a systematization of earlier knowledge of geometry. Its improvement over earlier treatments was recognized, with the result that there was little interest in preserving the earlier ones. There are 13 total books in the Elements, Books I–IV, Books V and VII–X deal with number theory, with numbers treated geometrically via their representation as line segments with various lengths. Notions such as numbers and rational and irrational numbers are introduced. The infinitude of prime numbers is proved, a typical result is the 1,3 ratio between the volume of a cone and a cylinder with the same height and base. Euclidean geometry is a system, in which all theorems are derived from a small number of axioms. To produce a straight line continuously in a straight line. To describe a circle with any centre and distance and that all right angles are equal to one another. Although Euclids statement of the only explicitly asserts the existence of the constructions. The Elements also include the five common notions, Things that are equal to the same thing are also equal to one another
6.
Non-Euclidean geometry
–
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those specifying Euclidean geometry. In the latter case one obtains hyperbolic geometry and elliptic geometry, when the metric requirement is relaxed, then there are affine planes associated with the planar algebras which give rise to kinematic geometries that have also been called non-Euclidean geometry. The essential difference between the geometries is the nature of parallel lines. In hyperbolic geometry, by contrast, there are many lines through A not intersecting ℓ, while in elliptic geometry. In elliptic geometry the lines curve toward each other and intersect, the debate that eventually led to the discovery of the non-Euclidean geometries began almost as soon as Euclids work Elements was written. In the Elements, Euclid began with a number of assumptions. Other mathematicians have devised simpler forms of this property, regardless of the form of the postulate, however, it consistently appears to be more complicated than Euclids other postulates,1. To draw a line from any point to any point. To produce a straight line continuously in a straight line. To describe a circle with any centre and distance and that all right angles are equal to one another. For at least a thousand years, geometers were troubled by the complexity of the fifth postulate. Many attempted to find a proof by contradiction, including Ibn al-Haytham, Omar Khayyám, Nasīr al-Dīn al-Tūsī and these theorems along with their alternative postulates, such as Playfairs axiom, played an important role in the later development of non-Euclidean geometry. These early attempts did, however, provide some early properties of the hyperbolic and elliptic geometries. Another example is al-Tusis son, Sadr al-Din, who wrote a book on the subject in 1298, based on al-Tusis later thoughts and he essentially revised both the Euclidean system of axioms and postulates and the proofs of many propositions from the Elements. His work was published in Rome in 1594 and was studied by European geometers and he finally reached a point where he believed that his results demonstrated the impossibility of hyperbolic geometry. His claim seems to have based on Euclidean presuppositions, because no logical contradiction was present. In this attempt to prove Euclidean geometry he instead unintentionally discovered a new viable geometry, in 1766 Johann Lambert wrote, but did not publish, Theorie der Parallellinien in which he attempted, as Saccheri did, to prove the fifth postulate. He worked with a figure that today we call a Lambert quadrilateral and he quickly eliminated the possibility that the fourth angle is obtuse, as had Saccheri and Khayyam, and then proceeded to prove many theorems under the assumption of an acute angle
7.
Elliptic geometry
–
Elliptic geometry has a variety of properties that differ from those of classical Euclidean plane geometry. For example, the sum of the angles of any triangle is always greater than 180°. In elliptic geometry, two lines perpendicular to a line must intersect. In fact, the perpendiculars on one side all intersect at the pole of the given line. There are no points in elliptic geometry. Every point corresponds to a polar line of which it is the absolute pole. Any point on this line forms an absolute conjugate pair with the pole. Such a pair of points is orthogonal, and the distance between them is a quadrant, the distance between a pair of points is proportional to the angle between their absolute polars. As explained by H. S. M. Coxeter The name elliptic is possibly misleading and it does not imply any direct connection with the curve called an ellipse, but only a rather far-fetched analogy. A central conic is called an ellipse or a hyperbola according as it has no asymptote or two asymptotes, analogously, a non-Euclidean plane is said to be elliptic or hyperbolic according as each of its lines contains no point at infinity or two points at infinity. A simple way to picture elliptic geometry is to look at a globe, neighboring lines of longitude appear to be parallel at the equator, yet they intersect at the poles. More precisely, the surface of a sphere is a model of elliptic geometry if lines are modeled by great circles, with this identification of antipodal points, the model satisfies Euclids first postulate, which states that two points uniquely determine a line. Metaphorically, we can imagine geometers who are like living on the surface of a sphere. Even if the ants are unable to move off the surface, they can still construct lines, the existence of a third dimension is irrelevant to the ants ability to do geometry, and its existence is neither verifiable nor necessary from their point of view. Another way of putting this is that the language of the axioms is incapable of expressing the distinction between one model and another. In Euclidean geometry, a figure can be scaled up or scaled down indefinitely, and the figures are similar, i. e. they have the same angles. In elliptic geometry this is not the case, for example, in the spherical model we can see that the distance between any two points must be strictly less than half the circumference of the sphere. A line segment therefore cannot be scaled up indefinitely, a geometer measuring the geometrical properties of the space he or she inhabits can detect, via measurements, that there is a certain distance scale that is a property of the space
8.
Spherical geometry
–
Spherical geometry is the geometry of the two-dimensional surface of a sphere. It is an example of a geometry that is not Euclidean, two practical applications of the principles of spherical geometry are navigation and astronomy. In plane geometry, the concepts are points and lines. On a sphere, points are defined in the usual sense, the equivalents of lines are not defined in the usual sense of straight line in Euclidean geometry, but in the sense of the shortest paths between points, which are called geodesics. On a sphere, the geodesics are the circles, other geometric concepts are defined as in plane geometry. Spherical geometry is not elliptic geometry, but is rather a subset of elliptic geometry, for example, it shares with that geometry the property that a line has no parallels through a given point. An important geometry related to that of the sphere is that of the projective plane. Locally, the plane has all the properties of spherical geometry. In particular, it is non-orientable, or one-sided, Concepts of spherical geometry may also be applied to the oblong sphere, though minor modifications must be implemented on certain formulas. Higher-dimensional spherical geometries exist, see elliptic geometry, the earliest mathematical work of antiquity to come down to our time is On the rotating sphere by Autolycus of Pitane, who lived at the end of the fourth century BC. The book of unknown arcs of a written by the Islamic mathematician Al-Jayyani is considered to be the first treatise on spherical trigonometry. The book contains formulae for right-handed triangles, the law of sines. The book On Triangles by Regiomontanus, written around 1463, is the first pure trigonometrical work in Europe, however, Gerolamo Cardano noted a century later that much of its material on spherical trigonometry was taken from the twelfth-century work of the Andalusi scholar Jabir ibn Aflah. L. Euler, De curva rectificabili in superficie sphaerica, Novi Commentarii academiae scientiarum Petropolitanae 15,1771, pp. 195–216, Opera Omnia, Series 1, Volume 28, pp. 142–160. L. Euler, De mensura angulorum solidorum, Acta academiae scientarum imperialis Petropolitinae 2,1781, p. 31–54, Opera Omnia, Series 1, vol. L. Euler, Problematis cuiusdam Pappi Alexandrini constructio, Acta academiae scientarum imperialis Petropolitinae 4,1783, p. 91–96, Opera Omnia, Series 1, vol. L. Euler, Geometrica et sphaerica quaedam, Mémoires de lAcademie des Sciences de Saint-Petersbourg 5,1815, p. 96–114, Opera Omnia, Series 1, vol. L. Euler, Trigonometria sphaerica universa, ex primis principiis breviter et dilucide derivata, Acta academiae scientarum imperialis Petropolitinae 3,1782, p. 72–86, Opera Omnia, Series 1, vol