1.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
2.
Euclidean geometry
–
Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry, the Elements. Euclids method consists in assuming a set of intuitively appealing axioms. Although many of Euclids results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in school as the first axiomatic system. It goes on to the geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, for more than two thousand years, the adjective Euclidean was unnecessary because no other sort of geometry had been conceived. Euclids axioms seemed so obvious that any theorem proved from them was deemed true in an absolute, often metaphysical. Today, however, many other self-consistent non-Euclidean geometries are known, Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axioms to propositions without the use of coordinates. This is in contrast to analytic geometry, which uses coordinates, the Elements is mainly a systematization of earlier knowledge of geometry. Its improvement over earlier treatments was recognized, with the result that there was little interest in preserving the earlier ones. There are 13 total books in the Elements, Books I–IV, Books V and VII–X deal with number theory, with numbers treated geometrically via their representation as line segments with various lengths. Notions such as numbers and rational and irrational numbers are introduced. The infinitude of prime numbers is proved, a typical result is the 1,3 ratio between the volume of a cone and a cylinder with the same height and base. Euclidean geometry is a system, in which all theorems are derived from a small number of axioms. To produce a straight line continuously in a straight line. To describe a circle with any centre and distance and that all right angles are equal to one another. Although Euclids statement of the only explicitly asserts the existence of the constructions. The Elements also include the five common notions, Things that are equal to the same thing are also equal to one another
3.
Fractal
–
A fractal is a mathematical set that exhibits a repeating pattern displayed at every scale. It is also known as expanding symmetry or evolving symmetry, if the replication is exactly the same at every scale, it is called a self-similar pattern. An example of this is the Menger Sponge, Fractals can also be nearly the same at different levels. This latter pattern is illustrated in small magnifications of the Mandelbrot set, Fractals also include the idea of a detailed pattern that repeats itself. Fractals are different from other geometric figures because of the way in which they scale, doubling the edge lengths of a polygon multiplies its area by four, which is two raised to the power of two. Likewise, if the radius of a sphere is doubled, its volume scales by eight, but if a fractals one-dimensional lengths are all doubled, the spatial content of the fractal scales by a power that is not necessarily an integer. This power is called the dimension of the fractal. As mathematical equations, fractals are usually nowhere differentiable, the term fractal was first used by mathematician Benoît Mandelbrot in 1975. Mandelbrot based it on the Latin frāctus meaning broken or fractured, there is some disagreement amongst authorities about how the concept of a fractal should be formally defined. Mandelbrot himself summarized it as beautiful, damn hard, increasingly useful, Fractals are not limited to geometric patterns, but can also describe processes in time. Fractal patterns with various degrees of self-similarity have been rendered or studied in images, structures and sounds and found in nature, technology, art, Fractals are of particular relevance in the field of chaos theory, since the graphs of most chaotic processes are fractal. The word fractal often has different connotations for laypeople than for mathematicians, the mathematical concept is difficult to define formally even for mathematicians, but key features can be understood with little mathematical background. If this is done on fractals, however, no new detail appears, nothing changes, self-similarity itself is not necessarily counter-intuitive. The difference for fractals is that the pattern reproduced must be detailed, a regular line, for instance, is conventionally understood to be 1-dimensional, if such a curve is divided into pieces each 1/3 the length of the original, there are always 3 equal pieces. In contrast, consider the Koch snowflake and it is also 1-dimensional for the same reason as the ordinary line, but it has, in addition, a fractal dimension greater than 1 because of how its detail can be measured. This also leads to understanding a third feature, that fractals as mathematical equations are nowhere differentiable, in a concrete sense, this means fractals cannot be measured in traditional ways. The history of fractals traces a path from chiefly theoretical studies to modern applications in computer graphics, according to Pickover, the mathematics behind fractals began to take shape in the 17th century when the mathematician and philosopher Gottfried Leibniz pondered recursive self-similarity. In his writings, Leibniz used the term fractional exponents, also in the last part of that century, Felix Klein and Henri Poincaré introduced a category of fractal that has come to be called self-inverse fractals
4.
Symmetry
–
Symmetry in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, symmetry has a precise definition, that an object is invariant to any of various transformations. Although these two meanings of symmetry can sometimes be told apart, they are related, so they are discussed together. The opposite of symmetry is asymmetry, a geometric shape or object is symmetric if it can be divided into two or more identical pieces that are arranged in an organized fashion. This means that an object is symmetric if there is a transformation that moves individual pieces of the object, an object has rotational symmetry if the object can be rotated about a fixed point without changing the overall shape. An object has symmetry if it can be translated without changing its overall shape. An object has symmetry if it can be simultaneously translated and rotated in three-dimensional space along a line known as a screw axis. An object has symmetry if it does not change shape when it is expanded or contracted. Fractals also exhibit a form of symmetry, where small portions of the fractal are similar in shape to large portions. Other symmetries include glide reflection symmetry and rotoreflection symmetry, a dyadic relation R is symmetric if and only if, whenever its true that Rab, its true that Rba. Thus, is the age as is symmetrical, for if Paul is the same age as Mary. Symmetric binary logical connectives are and, or, biconditional, nand, xor, the set of operations that preserve a given property of the object form a group. In general, every kind of structure in mathematics will have its own kind of symmetry, examples include even and odd functions in calculus, the symmetric group in abstract algebra, symmetric matrices in linear algebra, and the Galois group in Galois theory. In statistics, it appears as symmetric probability distributions, and as skewness, symmetry in physics has been generalized to mean invariance—that is, lack of change—under any kind of transformation, for example arbitrary coordinate transformations. This concept has one of the most powerful tools of theoretical physics. See Noethers theorem, and also, Wigners classification, which says that the symmetries of the laws of physics determine the properties of the found in nature. Important symmetries in physics include continuous symmetries and discrete symmetries of spacetime, internal symmetries of particles, in biology, the notion of symmetry is mostly used explicitly to describe body shapes. Bilateral animals, including humans, are more or less symmetric with respect to the plane which divides the body into left
5.
Circle
–
A circle is a simple closed shape in Euclidean geometry. The distance between any of the points and the centre is called the radius, a circle is a simple closed curve which divides the plane into two regions, an interior and an exterior. Annulus, the object, the region bounded by two concentric circles. Arc, any connected part of the circle, centre, the point equidistant from the points on the circle. Chord, a segment whose endpoints lie on the circle. Circumference, the length of one circuit along the circle, or the distance around the circle and it is a special case of a chord, namely the longest chord, and it is twice the radius. Disc, the region of the bounded by a circle. Lens, the intersection of two discs, passant, a coplanar straight line that does not touch the circle. Radius, a line segment joining the centre of the circle to any point on the circle itself, or the length of such a segment, sector, a region bounded by two radii and an arc lying between the radii. Segment, a region, not containing the centre, bounded by a chord, secant, an extended chord, a coplanar straight line cutting the circle at two points. Semicircle, an arc that extends from one of a diameters endpoints to the other, in non-technical common usage it may mean the diameter, arc, and its interior, a two dimensional region, that is technically called a half-disc. A half-disc is a case of a segment, namely the largest one. Tangent, a straight line that touches the circle at a single point. The word circle derives from the Greek κίρκος/κύκλος, itself a metathesis of the Homeric Greek κρίκος, the origins of the words circus and circuit are closely related. The circle has been known since before the beginning of recorded history, natural circles would have been observed, such as the Moon, Sun, and a short plant stalk blowing in the wind on sand, which forms a circle shape in the sand. The circle is the basis for the wheel, which, with related inventions such as gears, in mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus. Some highlights in the history of the circle are,1700 BCE – The Rhind papyrus gives a method to find the area of a circular field. The result corresponds to 256/81 as a value of π.300 BCE – Book 3 of Euclids Elements deals with the properties of circles
6.
Three-dimensional space
–
Three-dimensional space is a geometric setting in which three values are required to determine the position of an element. This is the meaning of the term dimension. In physics and mathematics, a sequence of n numbers can be understood as a location in n-dimensional space, when n =3, the set of all such locations is called three-dimensional Euclidean space. It is commonly represented by the symbol ℝ3 and this serves as a three-parameter model of the physical universe in which all known matter exists. However, this space is one example of a large variety of spaces in three dimensions called 3-manifolds. Furthermore, in case, these three values can be labeled by any combination of three chosen from the terms width, height, depth, and breadth. In mathematics, analytic geometry describes every point in space by means of three coordinates. Three coordinate axes are given, each perpendicular to the two at the origin, the point at which they cross. They are usually labeled x, y, and z, below are images of the above-mentioned systems. Two distinct points determine a line. Three distinct points are either collinear or determine a unique plane, four distinct points can either be collinear, coplanar or determine the entire space. Two distinct lines can intersect, be parallel or be skew. Two parallel lines, or two intersecting lines, lie in a plane, so skew lines are lines that do not meet. Two distinct planes can either meet in a line or are parallel. Three distinct planes, no pair of which are parallel, can meet in a common line. In the last case, the three lines of intersection of each pair of planes are mutually parallel, a line can lie in a given plane, intersect that plane in a unique point or be parallel to the plane. In the last case, there will be lines in the plane that are parallel to the given line, a hyperplane is a subspace of one dimension less than the dimension of the full space. The hyperplanes of a space are the two-dimensional subspaces, that is