1.
Turing machine
–
Despite the models simplicity, given any computer algorithm, a Turing machine can be constructed that is capable of simulating that algorithms logic. The machine operates on an infinite memory tape divided into discrete cells, the machine positions its head over a cell and reads the symbol there. The Turing machine was invented in 1936 by Alan Turing, who called it an a-machine, thus, Turing machines prove fundamental limitations on the power of mechanical computation. Turing completeness is the ability for a system of instructions to simulate a Turing machine, a Turing machine is a general example of a CPU that controls all data manipulation done by a computer, with the canonical machine using sequential memory to store data. More specifically, it is a capable of enumerating some arbitrary subset of valid strings of an alphabet. Assuming a black box, the Turing machine cannot know whether it will eventually enumerate any one specific string of the subset with a given program and this is due to the fact that the halting problem is unsolvable, which has major implications for the theoretical limits of computing. The Turing machine is capable of processing an unrestricted grammar, which implies that it is capable of robustly evaluating first-order logic in an infinite number of ways. This is famously demonstrated through lambda calculus, a Turing machine that is able to simulate any other Turing machine is called a universal Turing machine. The thesis states that Turing machines indeed capture the notion of effective methods in logic and mathematics. Studying their abstract properties yields many insights into computer science and complexity theory, at any moment there is one symbol in the machine, it is called the scanned symbol. The machine can alter the scanned symbol, and its behavior is in part determined by that symbol, however, the tape can be moved back and forth through the machine, this being one of the elementary operations of the machine. Any symbol on the tape may therefore eventually have an innings, the Turing machine mathematically models a machine that mechanically operates on a tape. On this tape are symbols, which the machine can read and write, one at a time, in the original article, Turing imagines not a mechanism, but a person whom he calls the computer, who executes these deterministic mechanical rules slavishly. If δ is not defined on the current state and the current tape symbol, Q0 ∈ Q is the initial state F ⊆ Q is the set of final or accepting states. The initial tape contents is said to be accepted by M if it eventually halts in a state from F, Anything that operates according to these specifications is a Turing machine. The 7-tuple for the 3-state busy beaver looks like this, Q = Γ = b =0 Σ = q 0 = A F = δ = see state-table below Initially all tape cells are marked with 0. In the words of van Emde Boas, p.6, The set-theoretical object provides only partial information on how the machine will behave and what its computations will look like. For instance, There will need to be many decisions on what the symbols actually look like, and a failproof way of reading and writing symbols indefinitely
2.
Christos Papadimitriou
–
Christos Harilaos Papadimitriou is a Greek theoretical computer scientist, and professor of Computer Science at the University of California, Berkeley. Papadimitriou studied at the National Technical University of Athens, where in 1972 he received his Bachelor of Arts degree in Electrical Engineering. He continued to study at Princeton University, where he received his MS in Electrical Engineering in 1974 and his PhD in Electrical Engineering, Papadimitriou has taught at Harvard, MIT, the National Technical University of Athens, Stanford, and UCSD, and is currently the C. Lester Hogan Professor of Electrical Engineering and Computer Science at U. C, in 2001, Papadimitriou was inducted as a Fellow of the Association for Computing Machinery and in 2002 he was awarded the Knuth Prize. He became fellow of the U. S. National Academy of Engineering for contributions to complexity theory, database theory, in 2009 he was elected to the US National Academy of Sciences. During the 36th International Colloquium on Automata, Languages and Programming, in 2012, he, along with Elias Koutsoupias, was awarded the Gödel Prize for their joint work on the concept of the price of anarchy. Papadimitriou is the author of the textbook Computational Complexity, one of the most widely used textbooks in the field of complexity theory. He has also co-authored the textbook Algorithms with Sanjoy Dasgupta and Umesh Vazirani, and his name was listed in the 19th position on the CiteSeer search engine academic database and digital library. In 2011, Papadimitriou received a honoris causa from the National Technical University of Athens. In 2013, Papadimitriou received a honoris causa from the École polytechnique fédérale de Lausanne. Papadimitriou was awarded the IEEE John von Neumann Medal in 2016, the EATCS Award in 2015, the Gödel Prize in 2012, elements of the Theory of Computation. Prentice-Hall,1982, second edition September 1997, Greek edition Combinatorial Optimization, Algorithms and Complexity. Prentice-Hall,1982, second edition, Dover,1998, the Theory of Database Concurrency Control. A compilation of articles written for the Greek newspaper To Vima, mcGraw-Hill, September 2006 Logicomix, An Epic Search for Truth. Bloomsbury Publishing and Bloomsbury USA, September 2009 and he co-authored a paper with Bill Gates, co-founder of Microsoft. At UC Berkeley, in 2006, he joined a professor-and-graduate-student band called Lady X and The Positive Eigenvalues
3.
Computers and Intractability
–
It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a compendium of NP-complete problems. The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic, in a 2006 study, another appendix of the book featured problems for which it was not known whether they were NP-complete or in P. Minimum length triangulation As of 2015, only problem 1 has yet to be classified, problem 12 is known to be NP-hard, but it is unknown if it is in NP. Soon after it appeared, the received positive reviews by reputed researchers in the area of theoretical computer science. Book recommends the book to anyone who wishes to learn about the subject of NP-completeness and he concludes, Computer science needs more books like this one. Harry R. Lewis praises the prose of the authors, Garey and Johnsons book is a thorough, clear. In many respects it is hard to imagine a better treatment of the subject, also, he considers the appendix as unique and as a starting point in attempts to show new problems to be NP-complete. Every computer scientist should have this book on their shelves as well, Garey and Johnson has the best introduction to computational complexity I have ever seen. List of NP-complete problems List of important publications in computer science
4.
Computational complexity theory
–
A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage. Other complexity measures are used, such as the amount of communication, the number of gates in a circuit. One of the roles of computational complexity theory is to determine the limits on what computers can. Closely related fields in computer science are analysis of algorithms. More precisely, computational complexity theory tries to classify problems that can or cannot be solved with appropriately restricted resources, a computational problem can be viewed as an infinite collection of instances together with a solution for every instance. The input string for a problem is referred to as a problem instance. In computational complexity theory, a problem refers to the question to be solved. In contrast, an instance of this problem is a rather concrete utterance, for example, consider the problem of primality testing. The instance is a number and the solution is yes if the number is prime, stated another way, the instance is a particular input to the problem, and the solution is the output corresponding to the given input. For this reason, complexity theory addresses computational problems and not particular problem instances, when considering computational problems, a problem instance is a string over an alphabet. Usually, the alphabet is taken to be the binary alphabet, as in a real-world computer, mathematical objects other than bitstrings must be suitably encoded. For example, integers can be represented in binary notation, and graphs can be encoded directly via their adjacency matrices and this can be achieved by ensuring that different representations can be transformed into each other efficiently. Decision problems are one of the objects of study in computational complexity theory. A decision problem is a type of computational problem whose answer is either yes or no. A decision problem can be viewed as a language, where the members of the language are instances whose output is yes. The objective is to decide, with the aid of an algorithm, if the algorithm deciding this problem returns the answer yes, the algorithm is said to accept the input string, otherwise it is said to reject the input. An example of a problem is the following
5.
Boolean satisfiability problem
–
In computer science, the Boolean Satisfiability Problem is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given Boolean formula can be replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE. If this is the case, the formula is called satisfiable, on the other hand, if no such assignment exists, the function expressed by the formula is FALSE for all possible variable assignments and the formula is unsatisfiable. For example, the formula a AND NOT b is satisfiable because one can find the values a = TRUE and b = FALSE, in contrast, a AND NOT a is unsatisfiable. SAT is one of the first problems that was proven to be NP-complete and this means that all problems in the complexity class NP, which includes a wide range of natural decision and optimization problems, are at most as difficult to solve as SAT. g. Artificial intelligence, circuit design, and automatic theorem proving, a propositional logic formula, also called Boolean expression, is built from variables, operators AND, OR, NOT, and parentheses. A formula is said to be if it can be made TRUE by assigning appropriate logical values to its variables. The Boolean satisfiability problem is, given a formula, to whether it is satisfiable. This decision problem is of importance in various areas of computer science, including theoretical computer science, complexity theory, algorithmics, cryptography. There are several cases of the Boolean satisfiability problem in which the formulas are required to have a particular structure. A literal is either a variable, then called positive literal, or the negation of a variable, a clause is a disjunction of literals. A clause is called a Horn clause if it contains at most one positive literal, a formula is in conjunctive normal form if it is a conjunction of clauses. The formula is satisfiable, choosing x1 = FALSE, x2 = FALSE, and x3 arbitrarily, since ∧ ∧ ¬FALSE evaluates to ∧ ∧ TRUE, and in turn to TRUE ∧ TRUE ∧ TRUE. In contrast, the CNF formula a ∧ ¬a, consisting of two clauses of one literal, is unsatisfiable, since for a=TRUE and a=FALSE it evaluates to TRUE ∧ ¬TRUE and FALSE ∧ ¬FALSE, different sets of allowed boolean operators lead to different problem versions. As an example, R is a clause, and R ∧ R ∧ R is a generalized conjunctive normal form. This formula is used below, with R being the operator that is TRUE just if exactly one of its arguments is. Using the laws of Boolean algebra, every propositional logic formula can be transformed into an equivalent conjunctive normal form, for example, transforming the formula ∨ ∨. ∨ into conjunctive normal form yields ∧ ∧ ∧ ∧, ∧ ∧ ∧ ∧, while the former is a disjunction of n conjunctions of 2 variables, the latter consists of 2n clauses of n variables
6.
Polynomial
–
In mathematics, a polynomial is an expression consisting of variables and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponents. An example of a polynomial of a single indeterminate x is x2 − 4x +7, an example in three variables is x3 + 2xyz2 − yz +1. Polynomials appear in a variety of areas of mathematics and science. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, central concepts in algebra, the word polynomial joins two diverse roots, the Greek poly, meaning many, and the Latin nomen, or name. It was derived from the binomial by replacing the Latin root bi- with the Greek poly-. The word polynomial was first used in the 17th century, the x occurring in a polynomial is commonly called either a variable or an indeterminate. When the polynomial is considered as an expression, x is a symbol which does not have any value. It is thus correct to call it an indeterminate. However, when one considers the function defined by the polynomial, then x represents the argument of the function, many authors use these two words interchangeably. It is a convention to use uppercase letters for the indeterminates. However one may use it over any domain where addition and multiplication are defined, in particular, when a is the indeterminate x, then the image of x by this function is the polynomial P itself. This equality allows writing let P be a polynomial as a shorthand for let P be a polynomial in the indeterminate x. A polynomial is an expression that can be built from constants, the word indeterminate means that x represents no particular value, although any value may be substituted for it. The mapping that associates the result of substitution to the substituted value is a function. This can be expressed concisely by using summation notation, ∑ k =0 n a k x k That is. Each term consists of the product of a number—called the coefficient of the term—and a finite number of indeterminates, because x = x1, the degree of an indeterminate without a written exponent is one. A term and a polynomial with no indeterminates are called, respectively, a constant term, the degree of a constant term and of a nonzero constant polynomial is 0. The degree of the polynomial,0, is generally treated as not defined
7.
De Morgan's laws
–
In propositional logic and boolean algebra, De Morgans laws are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician, the rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation. Applications of the rules include simplification of logical expressions in computer programs, De Morgans laws are an example of a more general concept of mathematical duality. The negation of conjunction rule may be written in sequent notation, the negation of disjunction rule may be written as, ¬ ⊢. De Morgans laws are shown in the compact form above, with negation of the output on the left. A clearer form for substitution can be stated as, ≡ ¬, ≡ ¬ and this emphasizes the need to invert both the inputs and the output, as well as change the operator, when doing a substitution. In set notation, De Morgans laws can be remembered using the mnemonic break the line, De Morgan’s laws commonly apply to text searching using Boolean operators AND, OR, and NOT. Consider a set of documents containing the words “cars” and “trucks”, Document 3, Contains both “cars” and “trucks”. Document 4, Contains neither “cars” nor “trucks”, to evaluate Search A, clearly the search “” will hit on Documents 1,2, and 3. So the negation of that search will hit everything else, which is Document 4, evaluating Search B, the search “” will hit on documents that do not contain “cars”, which is Documents 2 and 4. Similarly the search “” will hit on Documents 1 and 4, applying the AND operator to these two searches will hit on the documents that are common to these two searches, which is Document 4. A similar evaluation can be applied to show that the two searches will return the same set of documents, Search C, NOT, Search D. The laws are named after Augustus De Morgan, who introduced a version of the laws to classical propositional logic. De Morgans formulation was influenced by algebraization of logic undertaken by George Boole, nevertheless, a similar observation was made by Aristotle, and was known to Greek and Medieval logicians. For example, in the 14th century, William of Ockham wrote down the words that would result by reading the laws out, jean Buridan, in his Summulae de Dialectica, also describes rules of conversion that follow the lines of De Morgans laws. Still, De Morgan is given credit for stating the laws in the terms of formal logic. De Morgans laws can be proved easily, and may seem trivial. Nonetheless, these laws are helpful in making inferences in proofs
8.
P versus NP problem
–
The P versus NP problem is a major unsolved problem in computer science. Informally speaking, it asks whether every problem whose solution can be verified by a computer can also be quickly solved by a computer. The underlying issues were first discussed in the 1950s, in letters from John Nash to the National Security Agency and it is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution. The general class of questions for which some algorithm can provide an answer in time is called class P or just P. For some questions, there is no way to find an answer quickly. The class of questions for which an answer can be verified in polynomial time is called NP, consider the subset sum problem, an example of a problem that is easy to verify, but whose answer may be difficult to compute. Given a set of integers, does some nonempty subset of them sum to 0, for instance, does a subset of the set add up to 0. The answer yes, because the subset adds up to zero can be verified with three additions. There is no algorithm to find such a subset in polynomial time. An answer to the P = NP question would determine whether problems that can be verified in polynomial time, like the subset-sum problem, can also be solved in polynomial time. Although the P versus NP problem was defined in 1971, there were previous inklings of the problems involved, the difficulty of proof. In 1955, mathematician John Nash wrote a letter to the NSA, if proved this would imply what we today would call P ≠ NP, since a proposed key can easily be verified in polynomial time. Another mention of the problem occurred in a 1956 letter written by Kurt Gödel to John von Neumann. The most common resources are time and space, in such analysis, a model of the computer for which time must be analyzed is required. Typically such models assume that the computer is deterministic and sequential, arguably the biggest open question in theoretical computer science concerns the relationship between those two classes, Is P equal to NP. In 2012,10 years later, the poll was repeated. To attack the P = NP question, the concept of NP-completeness is very useful, NP-complete problems are a set of problems to each of which any other NP-problem can be reduced in polynomial time, and whose solution may still be verified in polynomial time. That is, any NP problem can be transformed into any of the NP-complete problems, informally, an NP-complete problem is an NP problem that is at least as tough as any other problem in NP
9.
International Standard Book Number
–
The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, however, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay. The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces. Separating the parts of a 10-digit ISBN is also done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker