1.
Desargues's theorem
–
In projective geometry, Desarguess theorem, named after Girard Desargues, states, Two triangles are in perspective axially if and only if they are in perspective centrally. Denote the three vertices of one triangle by a, b and c, and those of the other by A, B and C, central perspectivity means that the three lines Aa, Bb and Cc are concurrent, at a point called the center of perspectivity. Mathematically the most satisfying way of resolving the issue of exceptional cases is to complete the Euclidean plane to a plane by adding points at infinity following Poncelet. However, there are some planes in which Desarguess theorem is false. In an affine space such as the Euclidean plane a similar statement is true, Desarguess theorem is therefore one of the most basic of simple and intuitive geometric theorems whose natural home is in projective rather than affine space. By definition, two triangles are perspective if and only if they are in perspective centrally, note that perspective triangles need not be similar. Under the standard duality of plane geometry, the statement of Desarguess theorem is self-dual, axial perspectivity is translated into central perspectivity. The Desargues configuration is a self-dual configuration, Desarguess theorem holds for projective space of any dimension over any field or division ring, and also holds for abstract projective spaces of dimension at least 3. In dimension 2 the planes for which it holds are called Desarguesian planes and are the same as the planes that can be given coordinates over a division ring, there are also many non-Desarguesian planes where Desarguess theorem does not hold. Desarguess theorem is true for any space of dimension at least 3. Desarguess theorem can be stated as follows, If lines Aa, Bb and Cc are concurrent, then the points AB ∩ ab, AC ∩ ac, the points A, B, a and b are coplanar because of the assumed concurrency of Aa and Bb. Therefore, the lines AB and ab belong to the same plane, further, if the two triangles lie on different planes, then the point AB ∩ ab belongs to both planes. By a symmetric argument, the points AC ∩ ac and BC ∩ bc also exist, since these two planes intersect in more than one point, their intersection is a line that contains all three points. This proves Desarguess theorem if the two triangles are not contained in the same plane, the last step of the proof fails if the projective space has dimension less than 3, as in this case it may not be possible to find a point outside the plane. As there are projective planes in which Desarguess theorem is not true. A plane in which Pappuss theorem is true is called Pappian. Hessenberg showed that Desarguess theorem can be deduced from three applications of Pappuss theorem, the converse of this result is not true, that is, not all Desarguesian planes are Pappian. Satisfying Pappuss theorem universally is equivalent to having the underlying coordinate system be commutative, a plane defined over a non-commutative division ring would therefore be Desarguesian but not Pappian
2.
Euclidean geometry
–
Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry, the Elements. Euclids method consists in assuming a set of intuitively appealing axioms. Although many of Euclids results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in school as the first axiomatic system. It goes on to the geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, for more than two thousand years, the adjective Euclidean was unnecessary because no other sort of geometry had been conceived. Euclids axioms seemed so obvious that any theorem proved from them was deemed true in an absolute, often metaphysical. Today, however, many other self-consistent non-Euclidean geometries are known, Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axioms to propositions without the use of coordinates. This is in contrast to analytic geometry, which uses coordinates, the Elements is mainly a systematization of earlier knowledge of geometry. Its improvement over earlier treatments was recognized, with the result that there was little interest in preserving the earlier ones. There are 13 total books in the Elements, Books I–IV, Books V and VII–X deal with number theory, with numbers treated geometrically via their representation as line segments with various lengths. Notions such as numbers and rational and irrational numbers are introduced. The infinitude of prime numbers is proved, a typical result is the 1,3 ratio between the volume of a cone and a cylinder with the same height and base. Euclidean geometry is a system, in which all theorems are derived from a small number of axioms. To produce a straight line continuously in a straight line. To describe a circle with any centre and distance and that all right angles are equal to one another. Although Euclids statement of the only explicitly asserts the existence of the constructions. The Elements also include the five common notions, Things that are equal to the same thing are also equal to one another
3.
Projective geometry
–
Projective geometry is a topic of mathematics. It is the study of properties that are invariant with respect to projective transformations. This means that, compared to elementary geometry, projective geometry has a different setting, projective space, properties meaningful for projective geometry are respected by this new idea of transformation, which is more radical in its effects than can be expressed by a transformation matrix and translations. The first issue for geometers is what kind of geometry is adequate for a novel situation, one source for projective geometry was indeed the theory of perspective. Another difference from elementary geometry is the way in which parallel lines can be said to meet in a point at infinity, again this notion has an intuitive basis, such as railway tracks meeting at the horizon in a perspective drawing. See projective plane for the basics of geometry in two dimensions. While the ideas were available earlier, projective geometry was mainly a development of the 19th century and this included the theory of complex projective space, the coordinates used being complex numbers. Several major types of more abstract mathematics were based on projective geometry and it was also a subject with a large number of practitioners for its own sake, as synthetic geometry. Another topic that developed from axiomatic studies of projective geometry is finite geometry, the topic of projective geometry is itself now divided into many research subtopics, two examples of which are projective algebraic geometry and projective differential geometry. Projective geometry is an elementary form of geometry, meaning that it is not based on a concept of distance. In two dimensions it begins with the study of configurations of points and lines and that there is indeed some geometric interest in this sparse setting was first established by Desargues and others in their exploration of the principles of perspective art. In higher dimensional spaces there are considered hyperplanes, and other linear subspaces, Projective geometry can also be seen as a geometry of constructions with a straight-edge alone. Since projective geometry excludes compass constructions, there are no circles, no angles, no measurements, no parallels and it was realised that the theorems that do apply to projective geometry are simpler statements. For example, the different conic sections are all equivalent in projective geometry, during the early 19th century the work of Jean-Victor Poncelet, Lazare Carnot and others established projective geometry as an independent field of mathematics. Its rigorous foundations were addressed by Karl von Staudt and perfected by Italians Giuseppe Peano, Mario Pieri, Alessandro Padoa, after much work on the very large number of theorems in the subject, therefore, the basics of projective geometry became understood. The incidence structure and the cross-ratio are fundamental invariants under projective transformations, Projective geometry can be modeled by the affine plane plus a line at infinity and then treating that line as ordinary. An algebraic model for doing projective geometry in the style of geometry is given by homogeneous coordinates. In a foundational sense, projective geometry and ordered geometry are elementary since they involve a minimum of axioms and either can be used as the foundation for affine, Projective geometry is not ordered and so it is a distinct foundation for geometry
4.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
5.
Ancient Greek
–
Ancient Greek includes the forms of Greek used in ancient Greece and the ancient world from around the 9th century BC to the 6th century AD. It is often divided into the Archaic period, Classical period. It is antedated in the second millennium BC by Mycenaean Greek, the language of the Hellenistic phase is known as Koine. Koine is regarded as a historical stage of its own, although in its earliest form it closely resembled Attic Greek. Prior to the Koine period, Greek of the classic and earlier periods included several regional dialects, Ancient Greek was the language of Homer and of fifth-century Athenian historians, playwrights, and philosophers. It has contributed many words to English vocabulary and has been a subject of study in educational institutions of the Western world since the Renaissance. This article primarily contains information about the Epic and Classical phases of the language, Ancient Greek was a pluricentric language, divided into many dialects. The main dialect groups are Attic and Ionic, Aeolic, Arcadocypriot, some dialects are found in standardized literary forms used in literature, while others are attested only in inscriptions. There are also several historical forms, homeric Greek is a literary form of Archaic Greek used in the epic poems, the Iliad and Odyssey, and in later poems by other authors. Homeric Greek had significant differences in grammar and pronunciation from Classical Attic, the origins, early form and development of the Hellenic language family are not well understood because of a lack of contemporaneous evidence. Several theories exist about what Hellenic dialect groups may have existed between the divergence of early Greek-like speech from the common Proto-Indo-European language and the Classical period and they have the same general outline, but differ in some of the detail. The invasion would not be Dorian unless the invaders had some relationship to the historical Dorians. The invasion is known to have displaced population to the later Attic-Ionic regions, the Greeks of this period believed there were three major divisions of all Greek people—Dorians, Aeolians, and Ionians, each with their own defining and distinctive dialects. Often non-west is called East Greek, Arcadocypriot apparently descended more closely from the Mycenaean Greek of the Bronze Age. Boeotian had come under a strong Northwest Greek influence, and can in some respects be considered a transitional dialect, thessalian likewise had come under Northwest Greek influence, though to a lesser degree. Most of the dialect sub-groups listed above had further subdivisions, generally equivalent to a city-state and its surrounding territory, Doric notably had several intermediate divisions as well, into Island Doric, Southern Peloponnesus Doric, and Northern Peloponnesus Doric. The Lesbian dialect was Aeolic Greek and this dialect slowly replaced most of the older dialects, although Doric dialect has survived in the Tsakonian language, which is spoken in the region of modern Sparta. Doric has also passed down its aorist terminations into most verbs of Demotic Greek, by about the 6th century AD, the Koine had slowly metamorphosized into Medieval Greek
6.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times
7.
Length
–
In geometric measurements, length is the most extended dimension of an object. In the International System of Quantities, length is any quantity with dimension distance, in other contexts length is the measured dimension of an object. For example, it is possible to cut a length of a wire which is shorter than wire thickness. Length may be distinguished from height, which is vertical extent, and width or breadth, length is a measure of one dimension, whereas area is a measure of two dimensions and volume is a measure of three dimensions. In most systems of measurement, the unit of length is a base unit, measurement has been important ever since humans settled from nomadic lifestyles and started using building materials, occupying land and trading with neighbours. As society has become more technologically oriented, much higher accuracies of measurement are required in a diverse set of fields. One of the oldest units of measurement used in the ancient world was the cubit which was the length of the arm from the tip of the finger to the elbow. This could then be subdivided into shorter units like the foot, hand or finger, the cubit could vary considerably due to the different sizes of people. After Albert Einsteins special relativity, length can no longer be thought of being constant in all reference frames. Thus a ruler that is one meter long in one frame of reference will not be one meter long in a frame that is travelling at a velocity relative to the first frame. This means length of an object is variable depending on the observer, in the physical sciences and engineering, when one speaks of units of length, the word length is synonymous with distance. There are several units that are used to measure length, in the International System of Units, the basic unit of length is the metre and is now defined in terms of the speed of light. The centimetre and the kilometre, derived from the metre, are commonly used units. In U. S. customary units, English or Imperial system of units, commonly used units of length are the inch, the foot, the yard, and the mile. Units used to denote distances in the vastness of space, as in astronomy, are longer than those typically used on Earth and include the astronomical unit, the light-year. Dimension Distance Orders of magnitude Reciprocal length Smoot Unit of length
8.
Area
–
Area is the quantity that expresses the extent of a two-dimensional figure or shape, or planar lamina, in the plane. Surface area is its analog on the surface of a three-dimensional object. It is the analog of the length of a curve or the volume of a solid. The area of a shape can be measured by comparing the shape to squares of a fixed size, in the International System of Units, the standard unit of area is the square metre, which is the area of a square whose sides are one metre long. A shape with an area of three square metres would have the area as three such squares. In mathematics, the square is defined to have area one. There are several formulas for the areas of simple shapes such as triangles, rectangles. Using these formulas, the area of any polygon can be found by dividing the polygon into triangles, for shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a motivation for the historical development of calculus. For a solid such as a sphere, cone, or cylinder. Formulas for the areas of simple shapes were computed by the ancient Greeks. Area plays an important role in modern mathematics, in addition to its obvious importance in geometry and calculus, area is related to the definition of determinants in linear algebra, and is a basic property of surfaces in differential geometry. In analysis, the area of a subset of the plane is defined using Lebesgue measure, in general, area in higher mathematics is seen as a special case of volume for two-dimensional regions. Area can be defined through the use of axioms, defining it as a function of a collection of certain plane figures to the set of real numbers and it can be proved that such a function exists. An approach to defining what is meant by area is through axioms, area can be defined as a function from a collection M of special kind of plane figures to the set of real numbers which satisfies the following properties, For all S in M, a ≥0. If S and T are in M then so are S ∪ T and S ∩ T, if S and T are in M with S ⊆ T then T − S is in M and a = a − a. If a set S is in M and S is congruent to T then T is also in M, every rectangle R is in M. If the rectangle has length h and breadth k then a = hk, let Q be a set enclosed between two step regions S and T
9.
Volume
–
Volume is the quantity of three-dimensional space enclosed by a closed surface, for example, the space that a substance or shape occupies or contains. Volume is often quantified numerically using the SI derived unit, the cubic metre, three dimensional mathematical shapes are also assigned volumes. Volumes of some simple shapes, such as regular, straight-edged, Volumes of a complicated shape can be calculated by integral calculus if a formula exists for the shapes boundary. Where a variance in shape and volume occurs, such as those that exist between different human beings, these can be calculated using techniques such as the Body Volume Index. One-dimensional figures and two-dimensional shapes are assigned zero volume in the three-dimensional space, the volume of a solid can be determined by fluid displacement. Displacement of liquid can also be used to determine the volume of a gas, the combined volume of two substances is usually greater than the volume of one of the substances. However, sometimes one substance dissolves in the other and the volume is not additive. In differential geometry, volume is expressed by means of the volume form, in thermodynamics, volume is a fundamental parameter, and is a conjugate variable to pressure. Any unit of length gives a unit of volume, the volume of a cube whose sides have the given length. For example, a cubic centimetre is the volume of a cube whose sides are one centimetre in length, in the International System of Units, the standard unit of volume is the cubic metre. The metric system also includes the litre as a unit of volume, thus 1 litre =3 =1000 cubic centimetres =0.001 cubic metres, so 1 cubic metre =1000 litres. Small amounts of liquid are often measured in millilitres, where 1 millilitre =0.001 litres =1 cubic centimetre. Capacity is defined by the Oxford English Dictionary as the applied to the content of a vessel, and to liquids, grain, or the like. Capacity is not identical in meaning to volume, though closely related, Units of capacity are the SI litre and its derived units, and Imperial units such as gill, pint, gallon, and others. Units of volume are the cubes of units of length, in SI the units of volume and capacity are closely related, one litre is exactly 1 cubic decimetre, the capacity of a cube with a 10 cm side. In other systems the conversion is not trivial, the capacity of a fuel tank is rarely stated in cubic feet, for example. The density of an object is defined as the ratio of the mass to the volume, the inverse of density is specific volume which is defined as volume divided by mass. Specific volume is an important in thermodynamics where the volume of a working fluid is often an important parameter of a system being studied