1.
Jmol
–
Jmol is computer software for molecular modelling chemical structures in 3-dimensions. Jmol returns a 3D representation of a molecule that may be used as a teaching tool and it is written in the programming language Java, so it can run on the operating systems Windows, macOS, Linux, and Unix, if Java is installed. It is free and open-source software released under a GNU Lesser General Public License version 2.0, a standalone application and a software development kit exist that can be integrated into other Java applications, such as Bioclipse and Taverna. A popular feature is an applet that can be integrated into web pages to display molecules in a variety of ways, for example, molecules can be displayed as ball-and-stick models, space-filling models, ribbon diagrams, etc. Jmol supports a range of chemical file formats, including Protein Data Bank, Crystallographic Information File, MDL Molfile. There is also a JavaScript-only version, JSmol, that can be used on computers with no Java, the Jmol applet, among other abilities, offers an alternative to the Chime plug-in, which is no longer under active development. While Jmol has many features that Chime lacks, it does not claim to reproduce all Chime functions, most notably, Chime requires plug-in installation and Internet Explorer 6.0 or Firefox 2.0 on Microsoft Windows, or Netscape Communicator 4.8 on Mac OS9. Jmol requires Java installation and operates on a variety of platforms. For example, Jmol is fully functional in Mozilla Firefox, Internet Explorer, Opera, Google Chrome, fast and Scriptable Molecular Graphics in Web Browsers without Java3D
2.
ChemSpider
–
ChemSpider is a database of chemicals. ChemSpider is owned by the Royal Society of Chemistry, the database contains information on more than 50 million molecules from over 500 data sources including, Each chemical is given a unique identifier, which forms part of a corresponding URL. This is an approach to develop an online chemistry database. The search can be used to widen or restrict already found results, structure searching on mobile devices can be done using free apps for iOS and for the Android. The ChemSpider database has been used in combination with text mining as the basis of document markup. The result is a system between chemistry documents and information look-up via ChemSpider into over 150 data sources. ChemSpider was acquired by the Royal Society of Chemistry in May,2009, prior to the acquisition by RSC, ChemSpider was controlled by a private corporation, ChemZoo Inc. The system was first launched in March 2007 in a release form. ChemSpider has expanded the generic support of a database to include support of the Wikipedia chemical structure collection via their WiChempedia implementation. A number of services are available online. SyntheticPages is an interactive database of synthetic chemistry procedures operated by the Royal Society of Chemistry. Users submit synthetic procedures which they have conducted themselves for publication on the site and these procedures may be original works, but they are more often based on literature reactions. Citations to the published procedure are made where appropriate. They are checked by an editor before posting. The pages do not undergo formal peer-review like a journal article. The comments are moderated by scientific editors. The intention is to collect practical experience of how to conduct useful chemical synthesis in the lab, while experimental methods published in an ordinary academic journal are listed formally and concisely, the procedures in ChemSpider SyntheticPages are given with more practical detail. Comments by submitters are included as well, other publications with comparable amounts of detail include Organic Syntheses and Inorganic Syntheses
3.
European Chemicals Agency
–
ECHA is the driving force among regulatory authorities in implementing the EUs chemicals legislation. ECHA helps companies to comply with the legislation, advances the safe use of chemicals, provides information on chemicals and it is located in Helsinki, Finland. The Agency, headed by Executive Director Geert Dancet, started working on 1 June 2007, the REACH Regulation requires companies to provide information on the hazards, risks and safe use of chemical substances that they manufacture or import. Companies register this information with ECHA and it is freely available on their website. So far, thousands of the most hazardous and the most commonly used substances have been registered, the information is technical but gives detail on the impact of each chemical on people and the environment. This also gives European consumers the right to ask whether the goods they buy contain dangerous substances. The Classification, Labelling and Packaging Regulation introduces a globally harmonised system for classifying and labelling chemicals into the EU. This worldwide system makes it easier for workers and consumers to know the effects of chemicals, companies need to notify ECHA of the classification and labelling of their chemicals. So far, ECHA has received over 5 million notifications for more than 100000 substances, the information is freely available on their website. Consumers can check chemicals in the products they use, Biocidal products include, for example, insect repellents and disinfectants used in hospitals. The Biocidal Products Regulation ensures that there is information about these products so that consumers can use them safely. ECHA is responsible for implementing the regulation, the law on Prior Informed Consent sets guidelines for the export and import of hazardous chemicals. Through this mechanism, countries due to hazardous chemicals are informed in advance and have the possibility of rejecting their import. Substances that may have effects on human health and the environment are identified as Substances of Very High Concern 1. These are mainly substances which cause cancer, mutation or are toxic to reproduction as well as substances which persist in the body or the environment, other substances considered as SVHCs include, for example, endocrine disrupting chemicals. Companies manufacturing or importing articles containing these substances in a concentration above 0 and they are required to inform users about the presence of the substance and therefore how to use it safely. Consumers have the right to ask the retailer whether these substances are present in the products they buy, once a substance has been officially identified in the EU as being of very high concern, it will be added to a list. This list is available on ECHA’s website and shows consumers and industry which chemicals are identified as SVHCs, Substances placed on the Candidate List can then move to another list
4.
PubChem
–
PubChem is a database of chemical molecules and their activities against biological assays. The system is maintained by the National Center for Biotechnology Information, a component of the National Library of Medicine, PubChem can be accessed for free through a web user interface. Millions of compound structures and descriptive datasets can be downloaded via FTP. PubChem contains substance descriptions and small molecules with fewer than 1000 atoms and 1000 bonds, more than 80 database vendors contribute to the growing PubChem database. PubChem consists of three dynamically growing primary databases, as of 28 January 2016, Compounds,82.6 million entries, contains pure and characterized chemical compounds. Substances,198 million entries, contains also mixtures, extracts, complexes, bioAssay, bioactivity results from 1.1 million high-throughput screening programs with several million values. PubChem contains its own online molecule editor with SMILES/SMARTS and InChI support that allows the import and export of all common chemical file formats to search for structures and fragments. In the text search form the database fields can be searched by adding the name in square brackets to the search term. A numeric range is represented by two separated by a colon. The search terms and field names are case-insensitive, parentheses and the logical operators AND, OR, and NOT can be used. AND is assumed if no operator is used, example,0,5000,50,10 -5,5 PubChem was released in 2004. The American Chemical Society has raised concerns about the publicly supported PubChem database and they have a strong interest in the issue since the Chemical Abstracts Service generates a large percentage of the societys revenue. To advocate their position against the PubChem database, ACS has actively lobbied the US Congress, soon after PubChems creation, the American Chemical Society lobbied U. S. Congress to restrict the operation of PubChem, which they asserted competes with their Chemical Abstracts Service
5.
Simplified molecular-input line-entry system
–
The simplified molecular-input line-entry system is a specification in form of a line notation for describing the structure of chemical species using short ASCII strings. SMILES strings can be imported by most molecule editors for conversion back into two-dimensional drawings or three-dimensional models of the molecules, the original SMILES specification was initiated in the 1980s. It has since modified and extended. In 2007, a standard called OpenSMILES was developed in the open-source chemistry community. Other linear notations include the Wiswesser Line Notation, ROSDAL and SLN, the original SMILES specification was initiated by David Weininger at the USEPA Mid-Continent Ecology Division Laboratory in Duluth in the 1980s. The Environmental Protection Agency funded the project to develop SMILES. It has since modified and extended by others, most notably by Daylight Chemical Information Systems. In 2007, a standard called OpenSMILES was developed by the Blue Obelisk open-source chemistry community. Other linear notations include the Wiswesser Line Notation, ROSDAL and SLN, in July 2006, the IUPAC introduced the InChI as a standard for formula representation. SMILES is generally considered to have the advantage of being slightly more human-readable than InChI, the term SMILES refers to a line notation for encoding molecular structures and specific instances should strictly be called SMILES strings. However, the term SMILES is also used to refer to both a single SMILES string and a number of SMILES strings, the exact meaning is usually apparent from the context. The terms canonical and isomeric can lead to confusion when applied to SMILES. The terms describe different attributes of SMILES strings and are not mutually exclusive, typically, a number of equally valid SMILES strings can be written for a molecule. For example, CCO, OCC and CC all specify the structure of ethanol, algorithms have been developed to generate the same SMILES string for a given molecule, of the many possible strings, these algorithms choose only one of them. This SMILES is unique for each structure, although dependent on the algorithm used to generate it. These algorithms first convert the SMILES to a representation of the molecular structure. A common application of canonical SMILES is indexing and ensuring uniqueness of molecules in a database, there is currently no systematic comparison across commercial software to test if such flaws exist in those packages. SMILES notation allows the specification of configuration at tetrahedral centers, and these are structural features that cannot be specified by connectivity alone and SMILES which encode this information are termed isomeric SMILES
6.
Chemical formula
–
These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a name, and it contains no words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulas can fully specify the structure of only the simplest of molecules and chemical substances, the simplest types of chemical formulas are called empirical formulas, which use letters and numbers indicating the numerical proportions of atoms of each type. Molecular formulas indicate the numbers of each type of atom in a molecule. For example, the formula for glucose is CH2O, while its molecular formula is C6H12O6. This is possible if the relevant bonding is easy to show in one dimension, an example is the condensed molecular/chemical formula for ethanol, which is CH3-CH2-OH or CH3CH2OH. For reasons of structural complexity, there is no condensed chemical formula that specifies glucose, chemical formulas may be used in chemical equations to describe chemical reactions and other chemical transformations, such as the dissolving of ionic compounds into solution. A chemical formula identifies each constituent element by its chemical symbol, in empirical formulas, these proportions begin with a key element and then assign numbers of atoms of the other elements in the compound, as ratios to the key element. For molecular compounds, these numbers can all be expressed as whole numbers. For example, the formula of ethanol may be written C2H6O because the molecules of ethanol all contain two carbon atoms, six hydrogen atoms, and one oxygen atom. Some types of compounds, however, cannot be written with entirely whole-number empirical formulas. An example is boron carbide, whose formula of CBn is a variable non-whole number ratio with n ranging from over 4 to more than 6.5. When the chemical compound of the consists of simple molecules. These types of formulas are known as molecular formulas and condensed formulas. A molecular formula enumerates the number of atoms to reflect those in the molecule, so that the formula for glucose is C6H12O6 rather than the glucose empirical formula. However, except for very simple substances, molecular chemical formulas lack needed structural information, for simple molecules, a condensed formula is a type of chemical formula that may fully imply a correct structural formula. For example, ethanol may be represented by the chemical formula CH3CH2OH
7.
Odor
–
An odor or odour or fragrance is caused by one or more volatilized chemical compounds, generally at a very low concentration, that humans or other animals perceive by the sense of olfaction. Odors are also commonly called scents, which can refer to both pleasant and unpleasant odors, the terms fragrance and aroma are used primarily by the food and cosmetic industry to describe a pleasant odor, and are sometimes used to refer to perfumes, and to describe floral scent. In contrast, malodor, stench, reek, and stink are used specifically to describe unpleasant odor, the term smell is used for both pleasant and unpleasant odors. In the United Kingdom, odour refers to scents in general, the sense of smell gives rise to the perception of odors, mediated by the olfactory nerve. The olfactory receptor cells are present in the olfactory epithelium. There are millions of olfactory receptor neurons that act as sensory signaling cells, each neuron has cilia in direct contact with air. The olfactory nerve is considered the smell mediator, the axon connects the brain to the external air, odorous molecules act as a chemical stimulus. Molecules bind to receptor proteins extended from cilia, initiating an electric signal, thus, by using a chemical that binds to copper in the mouse nose, so that copper wasn’t available to the receptors, the authors showed that the mice couldnt detect the thiols. However, these also found that MOR244-3 lacks the specific metal ion binding site suggested by Suslick. When the signal reaches a threshold, the fires, sending a signal traveling along the axon to the olfactory bulb. Interpretation of the begins, relating the smell to past experiences. The olfactory bulb acts as a station connecting the nose to the olfactory cortex in the brain. Olfactory information is processed and projected through a pathway to the central nervous system. Odor sensation usually depends on the concentration available to the olfactory receptors, the olfactory system does not interpret a single compound, but instead the whole odorous mix, not necessarily corresponding to concentration or intensity of any single constituent. The widest range of odors consists of compounds, although some simple compounds not containing carbon, such as hydrogen sulfide. The perception of an effect is a two-step process. First, there is the part, the detection of stimuli by receptors in the nose. The stimuli are processed by the region of the brain which is responsible for olfaction
8.
Density
–
The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume, ρ = m V, where ρ is the density, m is the mass, and V is the volume. In some cases, density is defined as its weight per unit volume. For a pure substance the density has the numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity, osmium and iridium are the densest known elements at standard conditions for temperature and pressure but certain chemical compounds may be denser. Thus a relative density less than one means that the floats in water. The density of a material varies with temperature and pressure and this variation is typically small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object, increasing the temperature of a substance decreases its density by increasing its volume. In most materials, heating the bottom of a results in convection of the heat from the bottom to the top. This causes it to rise relative to more dense unheated material, the reciprocal of the density of a substance is occasionally called its specific volume, a term sometimes used in thermodynamics. Density is a property in that increasing the amount of a substance does not increase its density. Archimedes knew that the irregularly shaped wreath could be crushed into a cube whose volume could be calculated easily and compared with the mass, upon this discovery, he leapt from his bath and ran naked through the streets shouting, Eureka. As a result, the term eureka entered common parlance and is used today to indicate a moment of enlightenment, the story first appeared in written form in Vitruvius books of architecture, two centuries after it supposedly took place. Some scholars have doubted the accuracy of this tale, saying among other things that the method would have required precise measurements that would have been difficult to make at the time, from the equation for density, mass density has units of mass divided by volume. As there are units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per metre and the cgs unit of gram per cubic centimetre are probably the most commonly used units for density.1,000 kg/m3 equals 1 g/cm3. In industry, other larger or smaller units of mass and or volume are often more practical, see below for a list of some of the most common units of density
9.
Melting point
–
The melting point of a solid is the temperature at which it changes state from solid to liquid at atmospheric pressure. At the melting point the solid and liquid phase exist in equilibrium, the melting point of a substance depends on pressure and is usually specified at standard pressure. When considered as the temperature of the change from liquid to solid. Because of the ability of some substances to supercool, the point is not considered as a characteristic property of a substance. For most substances, melting and freezing points are approximately equal, for example, the melting point and freezing point of mercury is 234.32 kelvins. However, certain substances possess differing solid-liquid transition temperatures, for example, agar melts at 85 °C and solidifies from 31 °C to 40 °C, such direction dependence is known as hysteresis. The melting point of ice at 1 atmosphere of pressure is close to 0 °C. In the presence of nucleating substances the freezing point of water is the same as the melting point, the chemical element with the highest melting point is tungsten, at 3687 K, this property makes tungsten excellent for use as filaments in light bulbs. Many laboratory techniques exist for the determination of melting points, a Kofler bench is a metal strip with a temperature gradient. Any substance can be placed on a section of the strip revealing its thermal behaviour at the temperature at that point, differential scanning calorimetry gives information on melting point together with its enthalpy of fusion. A basic melting point apparatus for the analysis of crystalline solids consists of an oil bath with a transparent window, the several grains of a solid are placed in a thin glass tube and partially immersed in the oil bath. The oil bath is heated and with the aid of the melting of the individual crystals at a certain temperature can be observed. In large/small devices, the sample is placed in a heating block, the measurement can also be made continuously with an operating process. For instance, oil refineries measure the point of diesel fuel online, meaning that the sample is taken from the process. This allows for more frequent measurements as the sample does not have to be manually collected, for refractory materials the extremely high melting point may be determined by heating the material in a black body furnace and measuring the black-body temperature with an optical pyrometer. For the highest melting materials, this may require extrapolation by several hundred degrees, the spectral radiance from an incandescent body is known to be a function of its temperature. An optical pyrometer matches the radiance of a body under study to the radiance of a source that has been previously calibrated as a function of temperature, in this way, the measurement of the absolute magnitude of the intensity of radiation is unnecessary. However, known temperatures must be used to determine the calibration of the pyrometer, for temperatures above the calibration range of the source, an extrapolation technique must be employed
10.
Boiling point
–
The boiling point of a substance is the temperature at which the vapor pressure of the liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the environmental pressure. A liquid in a vacuum has a lower boiling point than when that liquid is at atmospheric pressure. A liquid at high pressure has a boiling point than when that liquid is at atmospheric pressure. For a given pressure, different liquids boil at different temperatures, for example, water boils at 100 °C at sea level, but at 93.4 °C at 2,000 metres altitude. The normal boiling point of a liquid is the case in which the vapor pressure of the liquid equals the defined atmospheric pressure at sea level,1 atmosphere. At that temperature, the pressure of the liquid becomes sufficient to overcome atmospheric pressure. The standard boiling point has been defined by IUPAC since 1982 as the temperature at which boiling occurs under a pressure of 1 bar, the heat of vaporization is the energy required to transform a given quantity of a substance from a liquid into a gas at a given pressure. Liquids may change to a vapor at temperatures below their boiling points through the process of evaporation, evaporation is a surface phenomenon in which molecules located near the liquids edge, not contained by enough liquid pressure on that side, escape into the surroundings as vapor. On the other hand, boiling is a process in which molecules anywhere in the liquid escape, a saturated liquid contains as much thermal energy as it can without boiling. The saturation temperature is the temperature for a corresponding saturation pressure at which a liquid boils into its vapor phase, the liquid can be said to be saturated with thermal energy. Any addition of energy results in a phase transition. If the pressure in a system remains constant, a vapor at saturation temperature will begin to condense into its liquid phase as thermal energy is removed, similarly, a liquid at saturation temperature and pressure will boil into its vapor phase as additional thermal energy is applied. The boiling point corresponds to the temperature at which the pressure of the liquid equals the surrounding environmental pressure. Thus, the point is dependent on the pressure. Boiling points may be published with respect to the NIST, USA standard pressure of 101.325 kPa, at higher elevations, where the atmospheric pressure is much lower, the boiling point is also lower. The boiling point increases with increased pressure up to the critical point, the boiling point cannot be increased beyond the critical point. Likewise, the point decreases with decreasing pressure until the triple point is reached
11.
Aqueous solution
–
An aqueous solution is a solution in which the solvent is water. It is usually shown in chemical equations by appending to the relevant chemical formula, for example, a solution of table salt, or sodium chloride, in water would be represented as Na+ + Cl−. The word aqueous means pertaining to, related to, similar to, as water is an excellent solvent and is also naturally abundant, it is a ubiquitous solvent in chemistry. Substances that are hydrophobic often do not dissolve well in water, an example of a hydrophilic substance is sodium chloride. Acids and bases are aqueous solutions, as part of their Arrhenius definitions, the ability of a substance to dissolve in water is determined by whether the substance can match or exceed the strong attractive forces that water molecules generate between themselves. If the substance lacks the ability to dissolve in water the molecules form a precipitate, reactions in aqueous solutions are usually metathesis reactions. Metathesis reactions are another term for double-displacement, that is, when a cation displaces to form a bond with the other anion. The cation bonded with the latter anion will dissociate and bond with the other anion, aqueous solutions that conduct electric current efficiently contain strong electrolytes, while ones that conduct poorly are considered to have weak electrolytes. Those strong electrolytes are substances that are ionized in water. Nonelectrolytes are substances that dissolve in water yet maintain their molecular integrity, examples include sugar, urea, glycerol, and methylsulfonylmethane. When writing the equations of reactions, it is essential to determine the precipitate. To determine the precipitate, one must consult a chart of solubility, soluble compounds are aqueous, while insoluble compounds are the precipitate. Remember that there may not always be a precipitate, when performing calculations regarding the reacting of one or more aqueous solutions, in general one must know the concentration, or molarity, of the aqueous solutions. Solution concentration is given in terms of the form of the prior to it dissolving. Metal ions in aqueous solution Solubility Dissociation Acid-base reaction theories Properties of water Zumdahl S.1997, 4th ed. Boston, Houghton Mifflin Company
12.
Vapor pressure
–
Vapor pressure or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquids evaporation rate and it relates to the tendency of particles to escape from the liquid. A substance with a vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a surface is known as vapor pressure. As the temperature of a liquid increases, the energy of its molecules also increases. As the kinetic energy of the molecules increases, the number of molecules transitioning into a vapor also increases, the vapor pressure of any substance increases non-linearly with temperature according to the Clausius–Clapeyron relation. The atmospheric pressure boiling point of a liquid is the temperature at which the pressure equals the ambient atmospheric pressure. With any incremental increase in temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure. Bubble formation deeper in the liquid requires a pressure, and therefore higher temperature. More important at shallow depths, is the temperature required to start bubble formation. The surface tension of the wall lead to an overpressure in the very small initial bubbles. Thus, thermometer calibration should not rely on the temperature in boiling water, the vapor pressure that a single component in a mixture contributes to the total pressure in the system is called partial pressure. Vapor pressure is measured in the units of pressure. The International System of Units recognizes pressure as a unit with the dimension of force per area. One pascal is one newton per square meter, experimental measurement of vapor pressure is a simple procedure for common pressures between 1 and 200 kPa. Most accurate results are obtained near the point of substances. Better accuracy is achieved when care is taken to ensure that the entire substance and this is often done, as with the use of an isoteniscope, by submerging the containment area in a liquid bath. Very low vapor pressures of solids can be measured using the Knudsen effusion cell method, the Antoine equation is a mathematical expression of the relation between the vapor pressure and the temperature of pure liquid or solid substances
13.
Acid dissociation constant
–
An acid dissociation constant, Ka, is a quantitative measure of the strength of an acid in solution. It is the constant for a chemical reaction known as dissociation in the context of acid–base reactions. In the example shown in the figure, HA represents acetic acid, and A− represents the acetate ion, the chemical species HA, A− and H3O+ are said to be in equilibrium when their concentrations do not change with the passing of time. The definition can then be more simply H A ⇌ A − + H +, K a = This is the definition in common usage. A weak acid has a pKa value in the approximate range −2 to 12 in water, pKa values for strong acids can, however, be estimated by theoretical means. The definition can be extended to non-aqueous solvents, such as acetonitrile and dimethylsulfoxide. Denoting a solvent molecule by S H A + S ⇌ A − + S H +, K a = When the concentration of solvent molecules can be taken to be constant, K a =, as before. The value of pKa also depends on structure of the acid in many ways. For example, Pauling proposed two rules, one for successive pKa of polyprotic acids, and one to estimate the pKa of oxyacids based on the number of =O and −OH groups. Other structural factors that influence the magnitude of the dissociation constant include inductive effects, mesomeric effects. Hammett type equations have frequently applied to the estimation of pKa. The quantitative behaviour of acids and bases in solution can be only if their pKa values are known. These calculations find application in different areas of chemistry, biology, medicine. Acid dissociation constants are essential in aquatic chemistry and chemical oceanography. In living organisms, acid–base homeostasis and enzyme kinetics are dependent on the pKa values of the acids and bases present in the cell. According to Arrheniuss original definition, an acid is a substance that dissociates in solution, releasing the hydrogen ion H+. The equilibrium constant for this reaction is known as a dissociation constant. Brønsted and Lowry generalised this further to an exchange reaction
14.
Flash point
–
The flash point is the lowest temperature at which vapours of a volatile material will ignite, when given an ignition source. The flash point may sometimes be confused with the autoignition temperature, the fire point is the lowest temperature at which the vapor will keep burning after being ignited and the ignition source removed. The fire point is higher than the point, because at the flash point the vapor may be reliably expected to cease burning when the ignition source is removed. The flash point is a characteristic that is used to distinguish between flammable liquids, such as petrol, and combustible liquids, such as diesel. It is also used to characterize the fire hazards of liquids, all liquids have a specific vapor pressure, which is a function of that liquids temperature and is subject to Boyles Law. As temperature increases, vapor pressure increases, as vapor pressure increases, the concentration of vapor of a flammable or combustible liquid in the air increases. Hence, temperature determines the concentration of vapor of the liquid in the air. The flash point is the lowest temperature at which there will be enough flammable vapor to induce ignition when a source is applied. There are two types of flash point measurement, open cup and closed cup. In open cup devices, the sample is contained in a cup which is heated and, at intervals. The measured flash point will vary with the height of the flame above the liquid surface and, at sufficient height. The best-known example is the Cleveland open cup, in both these types, the cups are sealed with a lid through which the ignition source can be introduced. Closed cup testers normally give lower values for the point than open cup and are a better approximation to the temperature at which the vapour pressure reaches the lower flammable limit. The flash point is an empirical measurement rather than a physical parameter. The measured value will vary with equipment and test protocol variations, including temperature ramp rate, time allowed for the sample to equilibrate, sample volume, methods for determining the flash point of a liquid are specified in many standards. For example, testing by the Pensky-Martens closed cup method is detailed in ASTM D93, IP34, ISO2719, DIN51758, JIS K2265 and AFNOR M07-019. Determination of flash point by the Small Scale closed cup method is detailed in ASTM D3828 and D3278, EN ISO3679 and 3680, cEN/TR15138 Guide to Flash Point Testing and ISO TR29662 Guidance for Flash Point Testing cover the key aspects of flash point testing. Gasoline is a used in a spark-ignition engine
15.
Immediately dangerous to life or health
–
Examples include smoke or other poisonous gases at sufficiently high concentrations. It is calculated using the LD50 or LC50, IDLH values are often used to guide the selection of breathing apparatus that are made available to workers or firefighters in specific situations. The NIOSH definition does not include oxygen deficiency although atmosphere-supplying breathing apparatus is also required, examples include high altitudes and unventilated, confined spaces. It also uses the broader term impair, rather than prevent, for example, blinding but non-toxic smoke could be considered IDLH under the OSHA definition if it would impair the ability to escape a dangerous but not life-threatening atmosphere. The OSHA definition is part of a standard, which is the minimum legal requirement. If the concentration of substances is IDLH, the worker must use the most reliable respirators. Such respirators should not use cartridges or canister with the sorbent, in addition, the respirator must maintain positive pressure under the mask during inspiration, as this will prevent the leakage of unfiltered air through the gaps. The following examples are listed in reference to IDLH values, NIOSH IDLH site 1910.134 Respiratory protection definitions
16.
Organic compound
–
An organic compound is virtually any chemical compound that contains carbon, although a consensus definition remains elusive and likely arbitrary. Organic compounds are rare terrestrially, but of importance because all known life is based on organic compounds. The most basic petrochemicals are considered the building blocks of organic chemistry, for historical reasons discussed below, a few types of carbon-containing compounds, such as carbides, carbonates, simple oxides of carbon, and cyanides are considered inorganic. The distinction between organic and inorganic compounds, while useful in organizing the vast subject of chemistry. Organic chemistry is the science concerned with all aspects of organic compounds, Organic synthesis is the methodology of their preparation. The word organic is historical, dating to the 1st century, for many centuries, Western alchemists believed in vitalism. This is the theory that certain compounds could be synthesized only from their classical elements—earth, water, air, vitalism taught that these organic compounds were fundamentally different from the inorganic compounds that could be obtained from the elements by chemical manipulation. Vitalism survived for a while even after the rise of modern atomic theory and it first came under question in 1824, when Friedrich Wöhler synthesized oxalic acid, a compound known to occur only in living organisms, from cyanogen. A more decisive experiment was Wöhlers 1828 synthesis of urea from the inorganic salts potassium cyanate, urea had long been considered an organic compound, as it was known to occur only in the urine of living organisms. Wöhlers experiments were followed by others, in which increasingly complex organic substances were produced from inorganic ones without the involvement of any living organism. Even though vitalism has been discredited, scientific nomenclature retains the distinction between organic and inorganic compounds, still, even the broadest definition requires excluding alloys that contain carbon, including steel. The C-H definition excludes compounds that are considered organic, neither urea nor oxalic acid is organic by this definition, yet they were two key compounds in the vitalism debate. The IUPAC Blue Book on organic nomenclature specifically mentions urea and oxalic acid, other compounds lacking C-H bonds but traditionally considered organic include benzenehexol, mesoxalic acid, and carbon tetrachloride. Mellitic acid, which contains no C-H bonds, is considered an organic substance in Martian soil. The C-H bond-only rule also leads to somewhat arbitrary divisions in sets of carbon-fluorine compounds, for example, CF4 would be considered by this rule to be inorganic, whereas CF3H would be organic. Organic compounds may be classified in a variety of ways, one major distinction is between natural and synthetic compounds. Another distinction, based on the size of organic compounds, distinguishes between small molecules and polymers, natural compounds refer to those that are produced by plants or animals. Many of these are extracted from natural sources because they would be more expensive to produce artificially
17.
Thiol
–
In organic chemistry, a thiol is an organosulfur compound that contains a carbon-bonded sulfhydryl or sulphydryl group. Thiols are the analogue of alcohols, and the word is a portmanteau of thion + alcohol. The –SH functional group itself is referred to as either a group or a sulfhydryl group. Many thiols have strong odors resembling that of garlic or rotten eggs, thiols are used as odorants to assist in the detection of natural gas, and the smell of natural gas is due to the smell of the thiol used as the odorant. Thiols are sometimes referred to as mercaptans, thiols and alcohols have similar connectivity. Because sulfur is a larger element than oxygen, the C–S bond lengths, the C–S–H angles approach 90° whereas the angle for the C-O-H group are more open. In the solid or liquids, the hydrogen-bonding between individual groups is weak, the main cohesive force being van der Waals interactions between the highly polarizable divalent sulfur centers. Due to the lesser electronegativity difference between sulfur and hydrogen compared to oxygen and hydrogen, an S–H bond is less polar than the hydroxyl group, thiols have a lower dipole moment relative to the corresponding alcohol. There are several ways to name the alkylthiols, The suffix -thiol is added to the name of the alkane and this method is nearly identical to naming an alcohol and is used by the IUPAC. The word mercaptan replaces alcohol in the name of the equivalent alcohol compound, example, CH3SH would be methyl mercaptan, just as CH3OH is called methyl alcohol. The term sulfanyl or mercapto is used as a prefix, many thiols have strong odors resembling that of garlic. The odors of thiols, particularly those of low weight, are often strong. The spray of skunks consists mainly of low-molecular-weight thiols and derivatives and these compounds are detectable by the human nose at concentrations of only 10 parts per billion. Human sweat contains /-3-methyl-3-sulfanylhexan-1-ol, detectable at 2 parts per billion and having a fruity, methanethiol is a strong-smelling volatile thiol, also detectable at parts per billion levels, found in male mouse urine. Lawrence C. Katz and co-workers showed that MTMT functioned as a semiochemical, activating certain mouse olfactory sensory neurons, attracting female mice. Copper has been shown to be required by a specific mouse olfactory receptor, MOR244-3, thiols are also responsible for a class of wine faults caused by an unintended reaction between sulfur and yeast and the skunky odor of beer that has been exposed to ultraviolet light. Not all thiols have unpleasant odors, for example, furan-2-ylmethanethiol contributes to the aroma of roasted coffee, whereas grapefruit mercaptan, a monoterpenoid thiol, is responsible for the characteristic scent of grapefruit. The effect of the compound is present only at low concentrations
18.
Insecticide
–
An insecticide is a substance used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a factor behind the increase in agricultural 20th centurys productivity. Nearly all insecticides have the potential to significantly alter ecosystems, many are toxic to humans, Insecticides can be classified in two major groups, systemic insecticides, which have residual or long term activity, and contact insecticides, which have no residual activity. Furthermore, one can distinguish three types of insecticide, natural insecticides, such as nicotine, pyrethrum and neem extracts, made by plants as defenses against insects. Organic insecticides, which are chemical compounds, mostly working by contact. The mode of action describes how the pesticide kills or inactivates a pest and it provides another way of classifying insecticides. Mode of action is important in understanding whether an insecticide will be toxic to unrelated species, such as fish, birds, Insecticides are distinct from insect repellents, which do not kill. Systemic insecticides become incorporated and distributed throughout the whole plant. When insects feed on the plant, they ingest the insecticide, systemic insecticides produced by transgenic plants are called plant-incorporated protectants. For instance, a gene that codes for a specific Bacillus thuringiensis biocidal protein was introduced into corn, the plant manufactures the protein, which kills the insect when consumed. Contact insecticides are toxic to insects upon direct contact and these can be inorganic insecticides, which are metals and include arsenates, copper and fluorine compounds, which are less commonly used, and the commonly used sulfur. Contact insecticides can be organic insecticides, i. e. organic chemical compounds, synthetically produced, or they can be natural compounds like pyrethrum, neem oil etc. Contact insecticides usually have no residual activity, efficacy can be related to the quality of pesticide application, with small droplets, such as aerosols often improving performance. Many organic compounds are produced by plants for the purpose of defending the host plant from predation, a trivial case is tree rosin, which is a natural insecticide. Specific, the production of oleoresin by conifer species is a component of the response against insect attack. Many fragrances, e. g. oil of wintergreen, are in fact antifeedants, the technique has been expanded to include the use of RNA interference RNAi that fatally silences crucial insect genes. RNAi likely evolved as a defense against viruses, midgut cells in many larvae take up the molecules and help spread the signal
19.
Structural formula
–
The structural formula of a chemical compound is a graphic representation of the molecular structure, showing how the atoms are arranged. The chemical bonding within the molecule is shown, either explicitly or implicitly. For example, many compounds exist in different isomeric forms. A structural formula is able to indicate arrangements of atoms in three dimensional space in a way that a formula may not be able to do. Several systematic chemical naming formats, as in chemical databases, are used that are equivalent to and these chemical nomenclature systems include SMILES, InChI and CML. Lewis structures are flat graphical formulas that show atom connectivity and lone pair or unpaired electrons and this notation is mostly used for small molecules. Each line represents the two electrons of a single bond, two or three parallel lines between pairs of atoms represent double or triple bonds, respectively. Alternatively, pairs of dots may be used to represent bonding pairs, in addition, all non-bonded electrons and any formal charges on atoms are indicated. In early organic-chemistry publications, where use of graphics was strongly limited, skeletal formulas are the standard notation for more complex organic molecules. Hydrogen atoms attached to carbon atoms are not indicated, each atom is understood to be associated with enough hydrogen atoms to give the carbon atom four bonds. The presence of a positive or negative charge at a carbon atom takes the place of one of the hydrogen atoms. Hydrogen atoms attached to other than carbon must be written explicitly. Several methods exist to picture the three-dimensional arrangement of atoms in a molecule, chirality in skeletal formulas is indicated by the Natta projection method. Solid or dashed wedged bonds represent bonds pointing above-the-plane or below-the-plane of the paper, wavy single bonds represent unknown or unspecified stereochemistry or a mixture of isomers. For example, the adjacent diagram shows the fructose molecule with a bond to the HOCH2- group at the left. In this case the two ring structures are in chemical equilibrium with each other and also with the open-chain structure. The ring continually opens and closes, sometimes closing with one stereochemistry, skeletal formulae can depict cis and trans isomers of alkenes. Wavy single bonds are the way to represent unknown or unspecified stereochemistry or a mixture of isomers
20.
Alcohol
–
In chemistry, an alcohol is any organic compound in which the hydroxyl functional group is bound to a saturated carbon atom. The term alcohol originally referred to the alcohol ethanol, the predominant alcohol in alcoholic beverages. The suffix -ol in non-systematic names also typically indicates that the substance includes a functional group and, so. But many substances, particularly sugars contain hydroxyl functional groups without using the suffix, an important class of alcohols, of which methanol and ethanol are the simplest members is the saturated straight chain alcohols, the general formula for which is CnH2n+1OH. The word alcohol is from the Arabic kohl, a used as an eyeliner. Al- is the Arabic definite article, equivalent to the in English, alcohol was originally used for the very fine powder produced by the sublimation of the natural mineral stibnite to form antimony trisulfide Sb 2S3, hence the essence or spirit of this substance. It was used as an antiseptic, eyeliner, and cosmetic, the meaning of alcohol was extended to distilled substances in general, and then narrowed to ethanol, when spirits as a synonym for hard liquor. Bartholomew Traheron, in his 1543 translation of John of Vigo, Vigo wrote, the barbarous auctours use alcohol, or alcofoll, for moost fine poudre. The 1657 Lexicon Chymicum, by William Johnson glosses the word as antimonium sive stibium, by extension, the word came to refer to any fluid obtained by distillation, including alcohol of wine, the distilled essence of wine. Libavius in Alchymia refers to vini alcohol vel vinum alcalisatum, Johnson glosses alcohol vini as quando omnis superfluitas vini a vino separatur, ita ut accensum ardeat donec totum consumatur, nihilque fæcum aut phlegmatis in fundo remaneat. The words meaning became restricted to spirit of wine in the 18th century and was extended to the class of substances so-called as alcohols in modern chemistry after 1850, the term ethanol was invented 1892, based on combining the word ethane with ol the last part of alcohol. In the IUPAC system, in naming simple alcohols, the name of the alkane chain loses the terminal e and adds ol, e. g. as in methanol and ethanol. When necessary, the position of the group is indicated by a number between the alkane name and the ol, propan-1-ol for CH 3CH 2CH 2OH, propan-2-ol for CH 3CHCH3. If a higher priority group is present, then the prefix hydroxy is used, in other less formal contexts, an alcohol is often called with the name of the corresponding alkyl group followed by the word alcohol, e. g. methyl alcohol, ethyl alcohol. Propyl alcohol may be n-propyl alcohol or isopropyl alcohol, depending on whether the group is bonded to the end or middle carbon on the straight propane chain. As described under systematic naming, if another group on the molecule takes priority, Alcohols are then classified into primary, secondary, and tertiary, based upon the number of carbon atoms connected to the carbon atom that bears the hydroxyl functional group. The primary alcohols have general formulas RCH2OH, the simplest primary alcohol is methanol, for which R=H, and the next is ethanol, for which R=CH3, the methyl group. Secondary alcohols are those of the form RRCHOH, the simplest of which is 2-propanol, for the tertiary alcohols the general form is RRRCOH
21.
Sulfur
–
Sulfur or sulphur is a chemical element with symbol S and atomic number 16. It is abundant, multivalent, and nonmetallic, under normal conditions, sulfur atoms form cyclic octatomic molecules with chemical formula S8. Elemental sulfur is a yellow crystalline solid at room temperature. Chemically, sulfur reacts with all elements except for gold, platinum, iridium, tellurium, though sometimes found in pure, native form, sulfur usually occurs as sulfide and sulfate minerals. Being abundant in native form, sulfur was known in ancient times, being mentioned for its uses in ancient India, ancient Greece, China, in the Bible, sulfur is called brimstone. Today, almost all elemental sulfur is produced as a byproduct of removing sulfur-containing contaminants from natural gas, the greatest commercial use of the element is the production of sulfuric acid for sulfate and phosphate fertilizers, and other chemical processes. The element sulfur is used in matches, insecticides, and fungicides, many sulfur compounds are odoriferous, and the smells of odorized natural gas, skunk scent, grapefruit, and garlic are due to organosulfur compounds. Hydrogen sulfide gives the characteristic odor to rotting eggs and other biological processes, sulfur is an essential element for all life, but almost always in the form of organosulfur compounds or metal sulfides. Three amino acids and two vitamins are organosulfur compounds, many cofactors also contain sulfur including glutathione and thioredoxin and iron–sulfur proteins. Disulfides, S–S bonds, confer mechanical strength and insolubility of the keratin, found in outer skin, hair. Sulfur is one of the chemical elements needed for biochemical functioning and is an elemental macronutrient for all organisms. Sulfur is derived from the Latin word sulpur, which was Hellenized to sulphur, the spelling sulfur appears toward the end of the Classical period. In 12th-century Anglo-French, it was sulfre, in the 14th century the Latin ph was restored, for sulphre, the parallel f~ph spellings continued in Britain until the 19th century, when the word was standardized as sulphur. Sulfur was the form chosen in the United States, whereas Canada uses both, the IUPAC adopted the spelling sulfur in 1990, as did the Nomenclature Committee of the Royal Society of Chemistry in 1992, restoring the spelling sulfur to Britain. Sulfur forms polyatomic molecules with different chemical formulas, the best-known allotrope being octasulfur, cyclo-S8. The point group of cyclo-S8 is D4d and its dipole moment is 0 D. Octasulfur is a soft, bright-yellow solid that is odorless and it melts at 115.21 °C, boils at 444.6 °C and sublimes easily. At 95.2 °C, below its melting temperature, cyclo-octasulfur changes from α-octasulfur to the β-polymorph, the structure of the S8 ring is virtually unchanged by this phase change, which affects the intermolecular interactions. At higher temperatures, the viscosity decreases as depolymerization occurs, molten sulfur assumes a dark red color above 200 °C
22.
Sulfhydryl group
–
In organic chemistry, a thiol is an organosulfur compound that contains a carbon-bonded sulfhydryl or sulphydryl group. Thiols are the analogue of alcohols, and the word is a portmanteau of thion + alcohol. The –SH functional group itself is referred to as either a group or a sulfhydryl group. Many thiols have strong odors resembling that of garlic or rotten eggs, thiols are used as odorants to assist in the detection of natural gas, and the smell of natural gas is due to the smell of the thiol used as the odorant. Thiols are sometimes referred to as mercaptans, thiols and alcohols have similar connectivity. Because sulfur is a larger element than oxygen, the C–S bond lengths, the C–S–H angles approach 90° whereas the angle for the C-O-H group are more open. In the solid or liquids, the hydrogen-bonding between individual groups is weak, the main cohesive force being van der Waals interactions between the highly polarizable divalent sulfur centers. Due to the lesser electronegativity difference between sulfur and hydrogen compared to oxygen and hydrogen, an S–H bond is less polar than the hydroxyl group, thiols have a lower dipole moment relative to the corresponding alcohol. There are several ways to name the alkylthiols, The suffix -thiol is added to the name of the alkane and this method is nearly identical to naming an alcohol and is used by the IUPAC. The word mercaptan replaces alcohol in the name of the equivalent alcohol compound, example, CH3SH would be methyl mercaptan, just as CH3OH is called methyl alcohol. The term sulfanyl or mercapto is used as a prefix, many thiols have strong odors resembling that of garlic. The odors of thiols, particularly those of low weight, are often strong. The spray of skunks consists mainly of low-molecular-weight thiols and derivatives and these compounds are detectable by the human nose at concentrations of only 10 parts per billion. Human sweat contains /-3-methyl-3-sulfanylhexan-1-ol, detectable at 2 parts per billion and having a fruity, methanethiol is a strong-smelling volatile thiol, also detectable at parts per billion levels, found in male mouse urine. Lawrence C. Katz and co-workers showed that MTMT functioned as a semiochemical, activating certain mouse olfactory sensory neurons, attracting female mice. Copper has been shown to be required by a specific mouse olfactory receptor, MOR244-3, thiols are also responsible for a class of wine faults caused by an unintended reaction between sulfur and yeast and the skunky odor of beer that has been exposed to ultraviolet light. Not all thiols have unpleasant odors, for example, furan-2-ylmethanethiol contributes to the aroma of roasted coffee, whereas grapefruit mercaptan, a monoterpenoid thiol, is responsible for the characteristic scent of grapefruit. The effect of the compound is present only at low concentrations
23.
Oxygen
–
Oxygen is a chemical element with symbol O and atomic number 8. It is a member of the group on the periodic table and is a highly reactive nonmetal. By mass, oxygen is the third-most abundant element in the universe, after hydrogen, at standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O2. This is an important part of the atmosphere and diatomic oxygen gas constitutes 20. 8% of the Earths atmosphere, additionally, as oxides the element makes up almost half of the Earths crust. Most of the mass of living organisms is oxygen as a component of water, conversely, oxygen is continuously replenished by photosynthesis, which uses the energy of sunlight to produce oxygen from water and carbon dioxide. Oxygen is too reactive to remain a free element in air without being continuously replenished by the photosynthetic action of living organisms. Another form of oxygen, ozone, strongly absorbs ultraviolet UVB radiation, but ozone is a pollutant near the surface where it is a by-product of smog. At low earth orbit altitudes, sufficient atomic oxygen is present to cause corrosion of spacecraft, the name oxygen was coined in 1777 by Antoine Lavoisier, whose experiments with oxygen helped to discredit the then-popular phlogiston theory of combustion and corrosion. One of the first known experiments on the relationship between combustion and air was conducted by the 2nd century BCE Greek writer on mechanics, Philo of Byzantium. In his work Pneumatica, Philo observed that inverting a vessel over a burning candle, Philo incorrectly surmised that parts of the air in the vessel were converted into the classical element fire and thus were able to escape through pores in the glass. Many centuries later Leonardo da Vinci built on Philos work by observing that a portion of air is consumed during combustion and respiration, Oxygen was discovered by the Polish alchemist Sendivogius, who considered it the philosophers stone. In the late 17th century, Robert Boyle proved that air is necessary for combustion, English chemist John Mayow refined this work by showing that fire requires only a part of air that he called spiritus nitroaereus. From this he surmised that nitroaereus is consumed in both respiration and combustion, Mayow observed that antimony increased in weight when heated, and inferred that the nitroaereus must have combined with it. Accounts of these and other experiments and ideas were published in 1668 in his work Tractatus duo in the tract De respiratione. Robert Hooke, Ole Borch, Mikhail Lomonosov, and Pierre Bayen all produced oxygen in experiments in the 17th and the 18th century but none of them recognized it as a chemical element. This may have been in part due to the prevalence of the philosophy of combustion and corrosion called the phlogiston theory, which was then the favored explanation of those processes. Established in 1667 by the German alchemist J. J. Becher, one part, called phlogiston, was given off when the substance containing it was burned, while the dephlogisticated part was thought to be its true form, or calx. The fact that a substance like wood gains overall weight in burning was hidden by the buoyancy of the combustion products
24.
Hydroxy group
–
A hydroxy or hydroxyl group is the entity with the formula OH. It contains oxygen bonded to hydrogen, in organic chemistry, alcohol and carboxylic acids contain hydroxy groups. The anion, called hydroxide, consists of a hydroxy group, according to IUPAC rules, the term hydroxyl refers to the radical OH only, while the functional group −OH is called hydroxy group. Water, alcohols, carboxylic acids, and many other hydroxy-containing compounds can be deprotonated readily and this behavior is rationalized by the disparate electronegativities of oxygen and hydrogen. Hydroxy-containing compounds engage in hydrogen bonding, which causes them to stick together, organic compounds, which are often poorly soluble in water, become water soluble when they contain two or more hydroxy groups, as illustrated by sugars and amino acid. The hydroxy group is pervasive in chemistry and biochemistry, many inorganic compounds contain hydroxy groups, including sulfuric acid, the chemical compound produced on the largest scale industrially. Hydroxy groups participate in the reactions that link simple biological molecules into long chains. The joining of a fatty acid to glycerol to form a triacylglycerol removes the −OH from the end of the fatty acid. The joining of two aldehyde sugars to form a disaccharide removes the −OH from the group at the aldehyde end of one sugar. The creation of a bond to link two amino acids to make a protein removes the −OH from the carboxy group of one amino acid. Hydroxyl radicals are highly reactive and undergo chemical reactions that make them short-lived, when biological systems are exposed to hydroxyl radicals, they can cause damage to cells, including those in humans, where they react with DNA, lipids, and proteins. In 2009, Indias Chandrayaan-1 satellite, NASAs Cassini spacecraft and the Deep Impact probe have each detected the presence of water by evidence of hydroxyl fragments on the Moon. As reported by Richard Kerr, A spectrometer detected an infrared absorption at a wavelength of 3.0 micrometers that only water or hydroxyl—a hydrogen, NASA also reported in 2009 that the LCROSS probe revealed an ultraviolet emission spectrum consistent with hydroxyl presence. The Venus Express orbiter sent back Venus science data from April 2006 until December 2014, results from Venus Express include the detection of hydroxyl in the atmosphere. Hydronium Ion Oxide Reece, Jane, Urry, Lisa, Cain, Michael, Wasserman, Steven, Minorsky, Peter, Jackson, berge, Susan, Golden, Brandy, Triglia, Logan
25.
Propene
–
Propene, also known as propylene or methyl ethylene, is an unsaturated organic compound having the chemical formula C3H6. It has one double bond, and is the second simplest member of the class of hydrocarbons. At room temperature and atmospheric pressure, propene is a gas, propene has a higher density and boiling point than ethylene due to its greater mass. It has a lower boiling point than propane and is thus more volatile. It lacks strongly polar bonds, yet the molecule has a dipole moment due to its reduced symmetry. Propene has the empirical formula as cyclopropane but their atoms are connected in different ways. Propene is found in nature as a byproduct of vegetation and fermentation processes, propene is produced from fossil fuels—petroleum, natural gas, and, to a much lesser extent, coal. Propene is a byproduct of oil refining and natural gas processing, during oil refining, ethylene, propene, and other compounds are produced as a result of cracking larger hydrocarbon molecules to produce hydrocarbons more in demand. A major source of propene is naphtha cracking intended to produce ethylene, propene can be separated by fractional distillation from hydrocarbon mixtures obtained from cracking and other refining processes, refinery-grade propene is about 50 to 70%. A shift to lighter steam cracker feedstocks with relatively lower propene yields, on-purpose production methods are becoming increasingly significant. Propene yields of about 90 wt% are achieved and this option may also be used when there is no butene feedstock. In this case, part of the ethylene feeds an ethylene-dimerization unit that converts ethylene into butene, propane dehydrogenation converts propane into propene and by-product hydrogen. The propene from propane yield is about 85 m%, reaction by-products are usually used as fuel for the propane dehydrogenation reaction. As a result, propene tends to be the only product and this route is popular in regions, such as the Middle East, where there is an abundance of propane from oil/gas operations. In this region, the output is expected to be capable of supplying not only domestic needs, but also the demand from China. However, as natural gas offerings in the United States are significantly increasing due to the exploitation of shale gas. Chemical companies are planning to establish PDH plants in the USA to take advantage of the low price raw material. Numerous plants dedicated to propane dehydrogenation are currently under construction around the world, there are already five licensed technologies
26.
Ultraviolet
–
Ultraviolet is an electromagnetic radiation with a wavelength from 10 nm to 400 nm, shorter than that of visible light but longer than X-rays. UV radiation constitutes about 10% of the light output of the Sun. It is also produced by electric arcs and specialized lights, such as lamps, tanning lamps. Consequently, the effects of UV are greater than simple heating effects. Suntan, freckling and sunburn are familiar effects of over-exposure, along with risk of skin cancer. Living things on dry land would be damaged by ultraviolet radiation from the Sun if most of it were not filtered out by the Earths atmosphere. More-energetic, shorter-wavelength extreme UV below 121 nm ionizes air so strongly that it is absorbed before it reaches the ground, Ultraviolet is also responsible for the formation of bone-strengthening vitamin D in most land vertebrates, including humans. The UV spectrum thus has both beneficial and harmful to human health. Ultraviolet rays are invisible to most humans, the lens in a human eye ordinarily filters out UVB frequencies or higher, and humans lack color receptor adaptations for ultraviolet rays. Under some conditions, children and young adults can see ultraviolet down to wavelengths of about 310 nm, near-UV radiation is visible to some insects, mammals, and birds. Small birds have a fourth color receptor for ultraviolet rays, this gives birds true UV vision, reindeer use near-UV radiation to see polar bears, who are poorly visible in regular light because they blend in with the snow. UV also allows mammals to see urine trails, which is helpful for animals to find food in the wild. The males and females of some species look identical to the human eye. Ultraviolet means beyond violet, violet being the color of the highest frequencies of visible light, Ultraviolet has a higher frequency than violet light. He called them oxidizing rays to emphasize chemical reactivity and to them from heat rays. The terms chemical and heat rays were eventually dropped in favour of ultraviolet and infrared radiation, in 1878 the effect of short-wavelength light on sterilizing bacteria was discovered. By 1903 it was known the most effective wavelengths were around 250 nm, in 1960, the effect of ultraviolet radiation on DNA was established. The discovery of the ultraviolet radiation below 200 nm, named vacuum ultraviolet because it is absorbed by air, was made in 1893 by the German physicist Victor Schumann