SIMBAD
SIMBAD is an astronomical database of objects beyond the Solar System. It is maintained by the Centre de données astronomiques de France. SIMBAD was created by merging the Catalog of Stellar Identifications and the Bibliographic Star Index as they existed at the Meudon Computer Centre until 1979, expanded by additional source data from other catalogues and the academic literature; the first on-line interactive version, known as Version 2, was made available in 1981. Version 3, developed in the C language and running on UNIX stations at the Strasbourg Observatory, was released in 1990. Fall of 2006 saw the release of Version 4 of the database, now stored in PostgreSQL, the supporting software, now written in Java; as of 10 February 2017, SIMBAD contains information for 9,099,070 objects under 24,529,080 different names, with 327,634 bibliographical references and 15,511,733 bibliographic citations. The minor planet 4692 SIMBAD was named in its honour. Planetary Data System – NASA's database of information on SSSB, maintained by JPL and Caltech.
NASA/IPAC Extragalactic Database – a database of information on objects outside the Milky Way maintained by JPL. NASA Exoplanet Archive – an online astronomical exoplanet catalog and data service Bibcode SIMBAD, Strasbourg SIMBAD, Harvard
Luminosity
In astronomy, luminosity is the total amount of energy emitted per unit of time by a star, galaxy, or other astronomical object. As a term for energy emitted per unit time, luminosity is synonymous with power. In SI units luminosity is measured in joules per second or watts. Values for luminosity are given in the terms of the luminosity of the Sun, L⊙. Luminosity can be given in terms of the astronomical magnitude system: the absolute bolometric magnitude of an object is a logarithmic measure of its total energy emission rate, while absolute magnitude is a logarithmic measure of the luminosity within some specific wavelength range or filter band. In contrast, the term brightness in astronomy is used to refer to an object's apparent brightness: that is, how bright an object appears to an observer. Apparent brightness depends on both the luminosity of the object and the distance between the object and observer, on any absorption of light along the path from object to observer. Apparent magnitude is a logarithmic measure of apparent brightness.
The distance determined by luminosity measures can be somewhat ambiguous, is thus sometimes called the luminosity distance. In astronomy, luminosity is the amount of electromagnetic energy; when not qualified, the term "luminosity" means bolometric luminosity, measured either in the SI units, watts, or in terms of solar luminosities. A bolometer is the instrument used to measure radiant energy over a wide band by absorption and measurement of heating. A star radiates neutrinos, which carry off some energy, contributing to the star's total luminosity; the IAU has defined a nominal solar luminosity of 3.828×1026 W to promote publication of consistent and comparable values in units of the solar luminosity. While bolometers do exist, they cannot be used to measure the apparent brightness of a star because they are insufficiently sensitive across the electromagnetic spectrum and because most wavelengths do not reach the surface of the Earth. In practice bolometric magnitudes are measured by taking measurements at certain wavelengths and constructing a model of the total spectrum, most to match those measurements.
In some cases, the process of estimation is extreme, with luminosities being calculated when less than 1% of the energy output is observed, for example with a hot Wolf-Rayet star observed only in the infra-red. Bolometric luminosities can be calculated using a bolometric correction to a luminosity in a particular passband; the term luminosity is used in relation to particular passbands such as a visual luminosity of K-band luminosity. These are not luminosities in the strict sense of an absolute measure of radiated power, but absolute magnitudes defined for a given filter in a photometric system. Several different photometric systems exist; some such as the UBV or Johnson system are defined against photometric standard stars, while others such as the AB system are defined in terms of a spectral flux density. A star's luminosity can be determined from two stellar characteristics: size and effective temperature; the former is represented in terms of solar radii, R⊙, while the latter is represented in kelvins, but in most cases neither can be measured directly.
To determine a star's radius, two other metrics are needed: the star's angular diameter and its distance from Earth. Both can be measured with great accuracy in certain cases, with cool supergiants having large angular diameters, some cool evolved stars having masers in their atmospheres that can be used to measure the parallax using VLBI. However, for most stars the angular diameter or parallax, or both, are far below our ability to measure with any certainty. Since the effective temperature is a number that represents the temperature of a black body that would reproduce the luminosity, it cannot be measured directly, but it can be estimated from the spectrum. An alternative way to measure stellar luminosity is to measure the star's apparent brightness and distance. A third component needed to derive the luminosity is the degree of interstellar extinction, present, a condition that arises because of gas and dust present in the interstellar medium, the Earth's atmosphere, circumstellar matter.
One of astronomy's central challenges in determining a star's luminosity is to derive accurate measurements for each of these components, without which an accurate luminosity figure remains elusive. Extinction can only be measured directly if the actual and observed luminosities are both known, but it can be estimated from the observed colour of a star, using models of the expected level of reddening from the interstellar medium. In the current system of stellar classification, stars are grouped according to temperature, with the massive young and energetic Class O stars boasting temperatures in excess of 30,000 K while the less massive older Class M stars exhibit temperatures less than 3,500 K; because luminosity is proportional to temperature to the fourth power, the large variation in stellar temperatures produces an vaster variation in stellar luminosity. Because the luminosity depends on a high power of the stellar mass, high mass luminous stars have much shorter lifetimes; the most luminous stars are always young stars, no more than a few million years for the most extreme.
In the Hertzsprung–Russell diagram, the x-axis represents temperature or spectral type while the y-axis represents luminosity or magnitude. The vast majority of stars are found along the main sequence with blue Class O stars found at the top left of the chart while red Class M stars fall to the bottom right. Certain stars like Deneb and Betelgeuse are
Parsec
The parsec is a unit of length used to measure large distances to astronomical objects outside the Solar System. A parsec is defined as the distance at which one astronomical unit subtends an angle of one arcsecond, which corresponds to 648000/π astronomical units. One parsec is equal to 31 trillion kilometres or 19 trillion miles; the nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun. Most of the stars visible to the unaided eye in the night sky are within 500 parsecs of the Sun; the parsec unit was first suggested in 1913 by the British astronomer Herbert Hall Turner. Named as a portmanteau of the parallax of one arcsecond, it was defined to make calculations of astronomical distances from only their raw observational data quick and easy for astronomers. For this reason, it is the unit preferred in astronomy and astrophysics, though the light-year remains prominent in popular science texts and common usage. Although parsecs are used for the shorter distances within the Milky Way, multiples of parsecs are required for the larger scales in the universe, including kiloparsecs for the more distant objects within and around the Milky Way, megaparsecs for mid-distance galaxies, gigaparsecs for many quasars and the most distant galaxies.
In August 2015, the IAU passed Resolution B2, which, as part of the definition of a standardized absolute and apparent bolometric magnitude scale, mentioned an existing explicit definition of the parsec as 648000/π astronomical units, or 3.08567758149137×1016 metres. This corresponds to the small-angle definition of the parsec found in many contemporary astronomical references; the parsec is defined as being equal to the length of the longer leg of an elongated imaginary right triangle in space. The two dimensions on which this triangle is based are its shorter leg, of length one astronomical unit, the subtended angle of the vertex opposite that leg, measuring one arc second. Applying the rules of trigonometry to these two values, the unit length of the other leg of the triangle can be derived. One of the oldest methods used by astronomers to calculate the distance to a star is to record the difference in angle between two measurements of the position of the star in the sky; the first measurement is taken from the Earth on one side of the Sun, the second is taken half a year when the Earth is on the opposite side of the Sun.
The distance between the two positions of the Earth when the two measurements were taken is twice the distance between the Earth and the Sun. The difference in angle between the two measurements is twice the parallax angle, formed by lines from the Sun and Earth to the star at the distant vertex; the distance to the star could be calculated using trigonometry. The first successful published direct measurements of an object at interstellar distances were undertaken by German astronomer Friedrich Wilhelm Bessel in 1838, who used this approach to calculate the 3.5-parsec distance of 61 Cygni. The parallax of a star is defined as half of the angular distance that a star appears to move relative to the celestial sphere as Earth orbits the Sun. Equivalently, it is the subtended angle, from that star's perspective, of the semimajor axis of the Earth's orbit; the star, the Sun and the Earth form the corners of an imaginary right triangle in space: the right angle is the corner at the Sun, the corner at the star is the parallax angle.
The length of the opposite side to the parallax angle is the distance from the Earth to the Sun (defined as one astronomical unit, the length of the adjacent side gives the distance from the sun to the star. Therefore, given a measurement of the parallax angle, along with the rules of trigonometry, the distance from the Sun to the star can be found. A parsec is defined as the length of the side adjacent to the vertex occupied by a star whose parallax angle is one arcsecond; the use of the parsec as a unit of distance follows from Bessel's method, because the distance in parsecs can be computed as the reciprocal of the parallax angle in arcseconds. No trigonometric functions are required in this relationship because the small angles involved mean that the approximate solution of the skinny triangle can be applied. Though it may have been used before, the term parsec was first mentioned in an astronomical publication in 1913. Astronomer Royal Frank Watson Dyson expressed his concern for the need of a name for that unit of distance.
He proposed the name astron, but mentioned that Carl Charlier had suggested siriometer and Herbert Hall Turner had proposed parsec. It was Turner's proposal. In the diagram above, S represents the Sun, E the Earth at one point in its orbit, thus the distance ES is one astronomical unit. The angle SDE is one arcsecond so by definition D is a point in space at a distance of one parsec from the Sun. Through trigonometry, the distance SD is calculated as follows: S D = E S tan 1 ″ S D ≈ E S 1 ″ = 1 au 1 60 × 60 × π
Astronomical spectroscopy
Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light and radio, which radiates from stars and other celestial objects. A stellar spectrum can reveal many properties of stars, such as their chemical composition, density, distance and relative motion using Doppler shift measurements. Spectroscopy is used to study the physical properties of many other types of celestial objects such as planets, nebulae and active galactic nuclei. Astronomical spectroscopy is used to measure three major bands of radiation: visible spectrum, X-ray. While all spectroscopy looks at specific areas of the spectrum, different methods are required to acquire the signal depending on the frequency. Ozone and molecular oxygen absorb light with wavelengths under 300 nm, meaning that X-ray and ultraviolet spectroscopy require the use of a satellite telescope or rocket mounted detectors. Radio signals have much longer wavelengths than optical signals, require the use of antennas or radio dishes.
Infrared light is absorbed by atmospheric water and carbon dioxide, so while the equipment is similar to that used in optical spectroscopy, satellites are required to record much of the infrared spectrum. Physicists have been looking at the solar spectrum since Isaac Newton first used a simple prism to observe the refractive properties of light. In the early 1800s Joseph von Fraunhofer used his skills as a glass maker to create pure prisms, which allowed him to observe 574 dark lines in a continuous spectrum. Soon after this, he combined telescope and prism to observe the spectrum of Venus, the Moon and various stars such as Betelgeuse; the resolution of a prism is limited by its size. This issue was resolved in the early 1900s with the development of high-quality reflection gratings by J. S. Plaskett at the Dominion Observatory in Ottawa, Canada. Light striking a mirror will reflect at the same angle, however a small portion of the light will be refracted at a different angle. By creating a "blazed" grating which utilizes a large number of parallel mirrors, the small portion of light can be focused and visualized.
These new spectroscopes were more detailed than a prism, required less light, could be focused on a specific region of the spectrum by tilting the grating. The limitation to a blazed grating is the width of the mirrors, which can only be ground a finite amount before focus is lost. In order to overcome this limitation holographic gratings were developed. Volume phase holographic gratings use a thin film of dichromated gelatin on a glass surface, subsequently exposed to a wave pattern created by an interferometer; this wave pattern sets up a reflection pattern similar to the blazed gratings but utilizing Bragg diffraction, a process where the angle of reflection is dependent on the arrangement of the atoms in the gelatin. The holographic gratings can have up to 6000 lines/mm and can be up to twice as efficient in collecting light as blazed gratings; because they are sealed between two sheets of glass, the holographic gratings are versatile lasting decades before needing replacement. Light dispersed by the grating or prism in a spectrograph can be recorded by a detector.
Photographic plates were used to record spectra until electronic detectors were developed, today optical spectrographs most employ charge-coupled devices. The wavelength scale of a spectrum can be calibrated by observing the spectrum of emission lines of known wavelength from a gas-discharge lamp; the flux scale of a spectrum can be calibrated as a function of wavelength by comparison with an observation of a standard star with corrections for atmospheric absorption of light. Radio astronomy was founded with the work of Karl Jansky in the early 1930s, while working for Bell Labs, he built a radio antenna to look at potential sources of interference for transatlantic radio transmissions. One of the sources of noise discovered came not from Earth, but from the center of the Milky Way, in the constellation Sagittarius. In 1942, JS Hey captured the sun's radio frequency using military radar receivers. Radio spectroscopy started with the discovery of the 21-centimeter H I line in 1951. Radio interferometry was pioneered in 1946, when Joseph Lade Pawsey, Ruby Payne-Scott and Lindsay McCready used a single antenna atop a sea cliff to observe 200 MHz solar radiation.
Two incident beams, one directly from the sun and the other reflected from the sea surface, generated the necessary interference. The first multi-receiver interferometer was built in the same year by Martin Vonberg. In 1960, Ryle and Antony Hewish published the technique of aperture synthesis to analyze interferometer data; the aperture synthesis process, which involves autocorrelating and discrete Fourier transforming the incoming signal, recovers both the spatial and frequency variation in flux. The result is a 3D image. For this work and Hewish were jointly awarded the 1974 Nobel Prize in Physics. Newton used a prism to split white light into a spectrum of color, Fraunhofer's high-quality prisms allowed scientists to see dark lines of an unknown origin. In the 1850s, Gustav Kirchhoff and Robert Bunsen described the phenomena behind these dark lines
Capella
Capella designated α Aurigae, is the brightest star in the constellation of Auriga, the sixth-brightest star in the night sky, the third-brightest in the northern celestial hemisphere after Arcturus and Vega. A prominent object in the northern winter sky, it is circumpolar to observers north of 44°N, its name meaning "little goat" in Latin, Capella depicted the goat Amalthea that suckled Zeus in classical mythology. Capella is close, at only 42.9 light-years from the Sun. Although it appears to be a single star to the naked eye, Capella is a quadruple star system organized in two binary pairs, made up of the stars Capella Aa, Capella Ab, Capella H, Capella L; the primary pair, Capella Aa and Capella Ab, are two bright yellow giant stars, both of which are around 2.5 times as massive as the Sun. The secondary pair, Capella H and Capella L, are around 10,000 astronomical units from the first and are two faint and cool red dwarfs. Capella Aa and Capella Ab have exhausted their core hydrogen, cooled and expanded, moving off the main sequence.
They are in a tight circular orbit about 0.74 AU apart, orbit each other every 104 days. Capella Aa is the cooler and more luminous of the two with spectral class K0III. An ageing red clump star, Capella Aa is fusing helium to oxygen in its core. Capella Ab is smaller and hotter and of spectral class G1III, it is in the Hertzsprung gap, corresponding to a brief subgiant evolutionary phase as it expands and cools to become a red giant. Capella is one of the brightest X-ray sources in the sky, thought to come from the corona of Capella Aa. Several other stars in the same visual field have been catalogued as companions but are physically unrelated. Α Aurigae is the star system's Bayer designation. It has the Flamsteed designation 13 Aurigae, it is listed in several multiple star catalogues as ADS 3841, CCDM J05168+4559, WDS J05167+4600. As a nearby star system, Capella is listed in the Gliese-Jahreiss Catalogue with designations GJ 194 for the bright pair of giants and GJ 195 for the faint pair of red dwarfs.
The traditional name Capella is Latin for female goat. In 2016, the International Astronomical Union organized a Working Group on Star Names to catalogue and standardize proper names for stars; the WGSN's first bulletin of July 2016 included a table of the first two batches of names approved by the WGSN. It is now so entered in the IAU Catalog of Star Names; the catalogue of star names lists Capella as applying to the star α Aurigae Aa. Capella was the brightest star in the night sky from 210,000 years ago to 160,000 years ago, at about −1.8 in apparent magnitude. At −1.1, Aldebaran was brightest before this period. Capella is thought to be mentioned in an Akkadian inscription dating to the 20th century BC, its goat-associated symbolism dates back to Mesopotamia as a constellation called "GAM", "Gamlum" or "MUL. GAM" in the 7th-century BC document MUL. APIN. GAM represented a scimitar or crook and may have represented the star alone or the constellation of Auriga as a whole. Bedouin astronomers created constellations that were groups of animals, where each star represented one animal.
The stars of Auriga comprised a herd of goats, an association present in Greek mythology. It is sometimes called the Shepherd's Star in English literature. Capella was seen as a portent of rain in classical times. Building J of the pre-Columbian site Monte Albán in Oaxaca state in Mexico was built around 275 BC, at a different orientation to other structures in the complex, its steps are aligned perpendicular to the rising of Capella at that time, so that a person looking out a doorway on the building would have faced it directly. Capella is significant as its heliacal rising took place within a day of the Sun passing directly overhead over Monte Albán. Professor William Wallace Campbell of the Lick Observatory announced that Capella was binary in 1899, based on spectroscopic observations—he noted on photographic plates taken from August 1896 to February 1897 that a second spectrum appeared superimposed over the first, that there was a doppler shift to violet in September and October and to red in November and February—showing that the components were moving toward and away from the Earth.
British astronomer Hugh Newall had observed its composite spectrum with a four prism spectroscope attached to a 25 inches telescope at Cambridge in July 1899, concluding that it was a binary star system. Many observers tried to discern the component stars without success. Known as "The Interferometrist's Friend", it was first resolved interferometrically in 1919 by John Anderson and Francis Pease at Mount Wilson Observatory, who published an orbit in 1920 based on their observations; this was the first interferometric measurement of any object outside the Solar System. A high-precision orbit was published in 1994 based on observations by the Mark III Stellar Interferometer, again at Mount Wilson Observatory. Capella became the first astronomical object to be imaged by a separate element optical interferometer when it was imaged by the Cambridge Optical Aperture Synthesis Telescope in September 1995. In 1914, Finnish astronomer Ragnar Furuhjelm observed that the spectroscopic binary had a faint c
Parallax
Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight, is measured by the angle or semi-angle of inclination between those two lines. Due to foreshortening, nearby objects show a larger parallax than farther objects when observed from different positions, so parallax can be used to determine distances. To measure large distances, such as the distance of a planet or a star from Earth, astronomers use the principle of parallax. Here, the term parallax is the semi-angle of inclination between two sight-lines to the star, as observed when Earth is on opposite sides of the Sun in its orbit; these distances form the lowest rung of what is called "the cosmic distance ladder", the first in a succession of methods by which astronomers determine the distances to celestial objects, serving as a basis for other distance measurements in astronomy forming the higher rungs of the ladder. Parallax affects optical instruments such as rifle scopes, binoculars and twin-lens reflex cameras that view objects from different angles.
Many animals, including humans, have two eyes with overlapping visual fields that use parallax to gain depth perception. In computer vision the effect is used for computer stereo vision, there is a device called a parallax rangefinder that uses it to find range, in some variations altitude to a target. A simple everyday example of parallax can be seen in the dashboard of motor vehicles that use a needle-style speedometer gauge; when viewed from directly in front, the speed may show 60. As the eyes of humans and other animals are in different positions on the head, they present different views simultaneously; this is the basis of stereopsis, the process by which the brain exploits the parallax due to the different views from the eye to gain depth perception and estimate distances to objects. Animals use motion parallax, in which the animals move to gain different viewpoints. For example, pigeons down to see depth; the motion parallax is exploited in wiggle stereoscopy, computer graphics which provide depth cues through viewpoint-shifting animation rather than through binocular vision.
Parallax arises due to change in viewpoint occurring due to motion of the observer, of the observed, or of both. What is essential is relative motion. By observing parallax, measuring angles, using geometry, one can determine distance. Astronomers use the word "parallax" as a synonym for "distance measurement" by other methods: see parallax #Astronomy. Stellar parallax created by the relative motion between the Earth and a star can be seen, in the Copernican model, as arising from the orbit of the Earth around the Sun: the star only appears to move relative to more distant objects in the sky. In a geostatic model, the movement of the star would have to be taken as real with the star oscillating across the sky with respect to the background stars. Stellar parallax is most measured using annual parallax, defined as the difference in position of a star as seen from the Earth and Sun, i. e. the angle subtended at a star by the mean radius of the Earth's orbit around the Sun. The parsec is defined as the distance.
Annual parallax is measured by observing the position of a star at different times of the year as the Earth moves through its orbit. Measurement of annual parallax was the first reliable way to determine the distances to the closest stars; the first successful measurements of stellar parallax were made by Friedrich Bessel in 1838 for the star 61 Cygni using a heliometer. Stellar parallax remains the standard for calibrating other measurement methods. Accurate calculations of distance based on stellar parallax require a measurement of the distance from the Earth to the Sun, now based on radar reflection off the surfaces of planets; the angles involved in these calculations are small and thus difficult to measure. The nearest star to the Sun, Proxima Centauri, has a parallax of 0.7687 ± 0.0003 arcsec. This angle is that subtended by an object 2 centimeters in diameter located 5.3 kilometers away. The fact that stellar parallax was so small that it was unobservable at the time was used as the main scientific argument against heliocentrism during the early modern age.
It is clear from Euclid's geometry that the effect would be undetectable if the stars were far enough away, but for various reasons such gigantic distances involved seemed implausible: it was one of Tycho's principal objections to Copernican heliocentrism that in order for it to be compatible with the lack of observable stellar parallax, there would have to be an enormous and unlikely void between the orbit of Saturn and the eighth sphere. In 1989, the satellite Hipparcos was launched for obtaining improved parallaxes and proper motions for over 100,000 nearby stars, increasing the reach of the method tenfold. So, Hipparcos is only able to measure parallax angles for stars up to about 1,600 light-years away, a little more than one percent of the diameter of the Milky Way Galaxy; the European Space Agency's Gaia mission, launched in December 2013, will be able to measure parallax angles to an accuracy of 10 microarcseconds, thus mapping nearby stars up to a distance of tens of thousands of ligh
Star
A star is type of astronomical object consisting of a luminous spheroid of plasma held together by its own gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth; the most prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the estimated 300 sextillion stars in the Universe are invisible to the naked eye from Earth, including all stars outside our galaxy, the Milky Way. For at least a portion of its life, a star shines due to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star's interior and radiates into outer space. All occurring elements heavier than helium are created by stellar nucleosynthesis during the star's lifetime, for some stars by supernova nucleosynthesis when it explodes.
Near the end of its life, a star can contain degenerate matter. Astronomers can determine the mass, age and many other properties of a star by observing its motion through space, its luminosity, spectrum respectively; the total mass of a star is the main factor. Other characteristics of a star, including diameter and temperature, change over its life, while the star's environment affects its rotation and movement. A plot of the temperature of many stars against their luminosities produces a plot known as a Hertzsprung–Russell diagram. Plotting a particular star on that diagram allows the age and evolutionary state of that star to be determined. A star's life begins with the gravitational collapse of a gaseous nebula of material composed of hydrogen, along with helium and trace amounts of heavier elements; when the stellar core is sufficiently dense, hydrogen becomes converted into helium through nuclear fusion, releasing energy in the process. The remainder of the star's interior carries energy away from the core through a combination of radiative and convective heat transfer processes.
The star's internal pressure prevents it from collapsing further under its own gravity. A star with mass greater than 0.4 times the Sun's will expand to become a red giant when the hydrogen fuel in its core is exhausted. In some cases, it will fuse heavier elements in shells around the core; as the star expands it throws a part of its mass, enriched with those heavier elements, into the interstellar environment, to be recycled as new stars. Meanwhile, the core becomes a stellar remnant: a white dwarf, a neutron star, or if it is sufficiently massive a black hole. Binary and multi-star systems consist of two or more stars that are gravitationally bound and move around each other in stable orbits; when two such stars have a close orbit, their gravitational interaction can have a significant impact on their evolution. Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy. Stars have been important to civilizations throughout the world, they have used for celestial navigation and orientation.
Many ancient astronomers believed that stars were permanently affixed to a heavenly sphere and that they were immutable. By convention, astronomers grouped stars into constellations and used them to track the motions of the planets and the inferred position of the Sun; the motion of the Sun against the background stars was used to create calendars, which could be used to regulate agricultural practices. The Gregorian calendar used nearly everywhere in the world, is a solar calendar based on the angle of the Earth's rotational axis relative to its local star, the Sun; the oldest dated star chart was the result of ancient Egyptian astronomy in 1534 BC. The earliest known star catalogues were compiled by the ancient Babylonian astronomers of Mesopotamia in the late 2nd millennium BC, during the Kassite Period; the first star catalogue in Greek astronomy was created by Aristillus in 300 BC, with the help of Timocharis. The star catalog of Hipparchus included 1020 stars, was used to assemble Ptolemy's star catalogue.
Hipparchus is known for the discovery of the first recorded nova. Many of the constellations and star names in use today derive from Greek astronomy. In spite of the apparent immutability of the heavens, Chinese astronomers were aware that new stars could appear. In 185 AD, they were the first to observe and write about a supernova, now known as the SN 185; the brightest stellar event in recorded history was the SN 1006 supernova, observed in 1006 and written about by the Egyptian astronomer Ali ibn Ridwan and several Chinese astronomers. The SN 1054 supernova, which gave birth to the Crab Nebula, was observed by Chinese and Islamic astronomers. Medieval Islamic astronomers gave Arabic names to many stars that are still used today and they invented numerous astronomical instruments that could compute the positions of the stars, they built the first large observatory research institutes for the purpose of producing Zij star catalogues. Among these, the Book of Fixed Stars was written by the Persian astronomer Abd al-Rahman al-Sufi, who observed a number of stars, star clusters and galaxies.
According to A. Zahoor, in the 11th century, the Persian polymath scholar Abu Rayhan Biruni described the Milky