1.
Schlegel diagram
–
In geometry, a Schlegel diagram is a projection of a polytope from R d into R d −1 through a point beyond one of its facets or faces. The resulting entity is a subdivision of the facet in R d −1 that is combinatorially equivalent to the original polytope. Named for Victor Schlegel, who in 1886 introduced this tool for studying combinatorial and topological properties of polytopes, in dimensions 3 and 4, a Schlegel diagram is a projection of a polyhedron into a plane figure and a projection of a 4-polytope to 3-space, respectively. As such, Schlegel diagrams are used as a means of visualizing four-dimensional polytopes. The most elementary Schlegel diagram, that of a polyhedron, was described by Duncan Sommerville as follows, if it is projected from any external point, since each ray cuts it twice, it will be represented by a polygonal area divided twice over into polygons. It is always possible by suitable choice of the centre of projection to make the projection of one face completely contain the projections of all the other faces and this is called a Schlegel diagram of the polyhedron. The Schlegel diagram completely represents the morphology of the polyhedron, Sommerville also considers the case of a simplex in four dimensions, The Schlegel diagram of simplex in S4 is a tetrahedron divided into four tetrahedra. More generally, a polytope in n-dimensions has a Schegel diagram constructed by a perspective projection viewed from a point outside of the polytope, all vertices and edges of the polytope are projected onto a hyperplane of that facet. If the polytope is convex, a point near the facet will exist which maps the facet outside, and all other facets inside, so no edges need to cross in the projection. Net – A different approach for visualization by lowering the dimension of a polytope is to build a net, disconnecting facets and this maintains the geometric scale and shape, but makes the topological connections harder to see. Victor Schlegel Theorie der homogen zusammengesetzten Raumgebilde, Nova Acta, Ksl, deutsche Akademie der Naturforscher, Band XLIV, Nr. 4, Druck von E. Blochmann & Sohn in Dresden, Victor Schlegel Ueber Projectionsmodelle der regelmässigen vier-dimensionalen Körper, Waren. Regular Polytopes, Dover edition, ISBN 0-486-61480-8 Grünbaum, Branko, Kaibel, Volker, Klee, Victor, convex polytopes, New York & London, Springer-Verlag, ISBN 0-387-00424-6. George W. Hart, 4D Polytope Projection Models by 3D Printing Nrich maths – for the teenager
2.
Uniform 4-polytope
–
In geometry, a uniform 4-polytope is a 4-polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons. 47 non-prismatic convex uniform 4-polytopes, one set of convex prismatic forms. There are also a number of non-convex star forms. Regular star 4-polytopes 1852, Ludwig Schläfli also found 4 of the 10 regular star 4-polytopes, discounting 6 with cells or vertex figures and this construction enumerated 45 semiregular 4-polytopes. 1912, E. L. Elte independently expanded on Gossets list with the publication The Semiregular Polytopes of the Hyperspaces, polytopes with one or two types of semiregular facets, Convex uniform polytopes,1940, The search was expanded systematically by H. S. M. Coxeter in his publication Regular and Semi-Regular Polytopes,1966 Norman Johnson completes his Ph. D. dissertation The Theory of Uniform Polytopes and Honeycombs under advisor Coxeter, completes the basic theory of uniform polytopes for dimensions 4 and higher. 1986 Coxeter published a paper Regular and Semi-Regular Polytopes II which included analysis of the unique snub 24-cell structure, 1998-2000, The 4-polytopes were systematically named by Norman Johnson, and given by George Olshevskys online indexed enumeration. Johnson named the 4-polytopes as polychora, like polyhedra for 3-polytopes, from the Greek roots poly,2004, A proof that the Conway-Guy set is complete was published by Marco Möller in his dissertation, Vierdimensionale Archimedische Polytope. Möller reproduced Johnsons naming system in his listing,2008, The Symmetries of Things was published by John H. He used his own ijk-ambo naming scheme for the indexed ring permutations beyond truncation and bitruncation, nonregular uniform star 4-polytopes, 2000-2005, In a collaborative search, up to 2005 a total of 1845 uniform 4-polytopes had been identified by Jonathan Bowers and George Olshevsky. Regular 4-polytopes are a subset of the uniform 4-polytopes, which satisfy additional requirements, Regular 4-polytopes can be expressed with Schläfli symbol have cells of type, faces of type, edge figures, and vertex figures. The existence of a regular 4-polytope is constrained by the existence of the regular polyhedra which becomes cells, there are 64 convex uniform 4-polytopes, including the 6 regular convex 4-polytopes, and excluding the infinite sets of the duoprisms and the antiprismatic hyperprisms. 5 are polyhedral prisms based on the Platonic solids 13 are polyhedral prisms based on the Archimedean solids 9 are in the self-dual regular A4 group family,9 are in the self-dual regular F4 group family. 15 are in the regular B4 group family 15 are in the regular H4 group family,1 special snub form in the group family. 1 special non-Wythoffian 4-polytopes, the grand antiprism, TOTAL,68 −4 =64 These 64 uniform 4-polytopes are indexed below by George Olshevsky. Repeated symmetry forms are indexed in brackets, in addition to the 64 above, there are 2 infinite prismatic sets that generate all of the remaining convex forms, Set of uniform antiprismatic prisms - sr× - Polyhedral prisms of two antiprisms. Set of uniform duoprisms - × - A product of two polygons, the 5-cell has diploid pentachoric symmetry, of order 120, isomorphic to the permutations of five elements, because all pairs of vertices are related in the same way. Facets are given, grouped in their Coxeter diagram locations by removing specified nodes, there is one small index subgroup +, order 60, or its doubling +, order 120, defining a omnisnub 5-cell which is listed for completeness, but is not uniform
3.
Tetrahedron
–
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra, the tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a polygon base. In the case of a tetrahedron the base is a triangle, like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. For any tetrahedron there exists a sphere on which all four vertices lie, a regular tetrahedron is one in which all four faces are equilateral triangles. It is one of the five regular Platonic solids, which have known since antiquity. In a regular tetrahedron, not only are all its faces the same size and shape, regular tetrahedra alone do not tessellate, but if alternated with regular octahedra they form the alternated cubic honeycomb, which is a tessellation. The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron, the compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula. This form has Coxeter diagram and Schläfli symbol h, the tetrahedron in this case has edge length 2√2. Inverting these coordinates generates the dual tetrahedron, and the together form the stellated octahedron. In other words, if C is the centroid of the base and this follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other. The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron, the symmetries of a regular tetrahedron correspond to half of those of a cube, those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by point inversion, the regular tetrahedron has 24 isometries, forming the symmetry group Td, isomorphic to the symmetric group, S4. The first corresponds to the A2 Coxeter plane, the two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these intersects the tetrahedron the resulting cross section is a rectangle. When the intersecting plane is one of the edges the rectangle is long. When halfway between the two edges the intersection is a square, the aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly, if the tetrahedron is bisected on this plane, both halves become wedges
4.
Octahedron
–
In geometry, an octahedron is a polyhedron with eight faces, twelve edges, and six vertices. A regular octahedron is a Platonic solid composed of eight equilateral triangles, a regular octahedron is the dual polyhedron of a cube. It is a square bipyramid in any of three orthogonal orientations and it is also a triangular antiprism in any of four orientations. An octahedron is the case of the more general concept of a cross polytope. A regular octahedron is a 3-ball in the Manhattan metric, the second and third correspond to the B2 and A2 Coxeter planes. The octahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. An octahedron with edge length √2 can be placed with its center at the origin and its vertices on the coordinate axes, the Cartesian coordinates of the vertices are then. In an x–y–z Cartesian coordinate system, the octahedron with center coordinates, additionally the inertia tensor of the stretched octahedron is I =. These reduce to the equations for the regular octahedron when x m = y m = z m = a 22, the interior of the compound of two dual tetrahedra is an octahedron, and this compound, called the stella octangula, is its first and only stellation. Correspondingly, an octahedron is the result of cutting off from a regular tetrahedron. One can also divide the edges of an octahedron in the ratio of the mean to define the vertices of an icosahedron. There are five octahedra that define any given icosahedron in this fashion, octahedra and tetrahedra can be alternated to form a vertex, edge, and face-uniform tessellation of space, called the octet truss by Buckminster Fuller. This is the only such tiling save the regular tessellation of cubes, another is a tessellation of octahedra and cuboctahedra. The octahedron is unique among the Platonic solids in having a number of faces meeting at each vertex. Consequently, it is the member of that group to possess mirror planes that do not pass through any of the faces. Using the standard nomenclature for Johnson solids, an octahedron would be called a square bipyramid, truncation of two opposite vertices results in a square bifrustum. The octahedron is 4-connected, meaning that it takes the removal of four vertices to disconnect the remaining vertices and it is one of only four 4-connected simplicial well-covered polyhedra, meaning that all of the maximal independent sets of its vertices have the same size
5.
Triangle
–
A triangle is a polygon with three edges and three vertices. It is one of the shapes in geometry. A triangle with vertices A, B, and C is denoted △ A B C, in Euclidean geometry any three points, when non-collinear, determine a unique triangle and a unique plane. This article is about triangles in Euclidean geometry except where otherwise noted, triangles can be classified according to the lengths of their sides, An equilateral triangle has all sides the same length. An equilateral triangle is also a polygon with all angles measuring 60°. An isosceles triangle has two sides of equal length, some mathematicians define an isosceles triangle to have exactly two equal sides, whereas others define an isosceles triangle as one with at least two equal sides. The latter definition would make all equilateral triangles isosceles triangles, the 45–45–90 right triangle, which appears in the tetrakis square tiling, is isosceles. A scalene triangle has all its sides of different lengths, equivalently, it has all angles of different measure. Hatch marks, also called tick marks, are used in diagrams of triangles, a side can be marked with a pattern of ticks, short line segments in the form of tally marks, two sides have equal lengths if they are both marked with the same pattern. In a triangle, the pattern is no more than 3 ticks. Similarly, patterns of 1,2, or 3 concentric arcs inside the angles are used to indicate equal angles, triangles can also be classified according to their internal angles, measured here in degrees. A right triangle has one of its interior angles measuring 90°, the side opposite to the right angle is the hypotenuse, the longest side of the triangle. The other two sides are called the legs or catheti of the triangle, special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3–4–5 right triangle, where 32 +42 =52, in this situation,3,4, and 5 are a Pythagorean triple. The other one is a triangle that has 2 angles that each measure 45 degrees. Triangles that do not have an angle measuring 90° are called oblique triangles, a triangle with all interior angles measuring less than 90° is an acute triangle or acute-angled triangle. If c is the length of the longest side, then a2 + b2 > c2, a triangle with one interior angle measuring more than 90° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side, then a2 + b2 < c2, a triangle with an interior angle of 180° is degenerate
6.
Vertex figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
7.
Triangular prism
–
In geometry, a triangular prism is a three-sided prism, it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is oblique, a uniform triangular prism is a right triangular prism with equilateral bases, and square sides. Equivalently, it is a polyhedron of which two faces are parallel, while the normals of the other three are in the same plane. All cross-sections parallel to the faces are the same triangle. A right triangular prism is semiregular or, more generally, a uniform if the base faces are equilateral triangles. It can be seen as a truncated trigonal hosohedron, represented by Schläfli symbol t, alternately it can be seen as the Cartesian product of a triangle and a line segment, and represented by the product x. The dual of a prism is a triangular bipyramid. The symmetry group of a right 3-sided prism with triangular base is D3h of order 12, the rotation group is D3 of order 6. The symmetry group does not contain inversion, the volume of any prism is the product of the area of the base and the distance between the two bases. A truncated right triangular prism has one triangular face truncated at an oblique angle, there are two full D2h symmetry facetings of a triangular prism, both with 6 isosceles triangle faces, one keeping the original top and bottom triangles, and one the original squares. Two lower C3v symmetry faceting have one triangle,3 lateral crossed square faces. This polyhedron is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations and this polyhedron is topologically related as a part of sequence of cantellated polyhedra with vertex figure, and continues as tilings of the hyperbolic plane. These vertex-transitive figures have reflectional symmetry and this polyhedron is topologically related as a part of sequence of cantellated polyhedra with vertex figure, and continues as tilings of the hyperbolic plane. These vertex-transitive figures have reflectional symmetry, there are 4 uniform compounds of triangular prisms, Compound of four triangular prisms, compound of eight triangular prisms, compound of ten triangular prisms, compound of twenty triangular prisms. Each progressive uniform polytope is constructed vertex figure of the previous polytope, thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes. In Coxeters notation the triangular prism is given the symbol −121, the triangular prism exists as cells of a number of four-dimensional uniform 4-polytopes, including, Wedge Weisstein, Eric W. Triangular prism. Interactive Polyhedron, Triangular Prism surface area and volume of a triangular prism
8.
Coxeter group
–
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups, however, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced as abstractions of reflection groups, and finite Coxeter groups were classified in 1935, Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the groups of regular polytopes. The condition m i j = ∞ means no relation of the form m should be imposed, the pair where W is a Coxeter group with generators S = is called a Coxeter system. Note that in general S is not uniquely determined by W, for example, the Coxeter groups of type B3 and A1 × A3 are isomorphic but the Coxeter systems are not equivalent. A number of conclusions can be drawn immediately from the above definition, the relation m i i =1 means that 1 =2 =1 for all i, as such the generators are involutions. If m i j =2, then the r i and r j commute. This follows by observing that x x = y y =1, in order to avoid redundancy among the relations, it is necessary to assume that m i j = m j i. This follows by observing that y y =1, together with m =1 implies that m = m y y = y m y = y y =1. Alternatively, k and k are elements, as y k y −1 = k y y −1 = k. The Coxeter matrix is the n × n, symmetric matrix with entries m i j, indeed, every symmetric matrix with positive integer and ∞ entries and with 1s on the diagonal such that all nondiagonal entries are greater than 1 serves to define a Coxeter group. The Coxeter matrix can be encoded by a Coxeter diagram. The vertices of the graph are labelled by generator subscripts, vertices i and j are adjacent if and only if m i j ≥3. An edge is labelled with the value of m i j whenever the value is 4 or greater, in particular, two generators commute if and only if they are not connected by an edge. Furthermore, if a Coxeter graph has two or more connected components, the group is the direct product of the groups associated to the individual components. Thus the disjoint union of Coxeter graphs yields a product of Coxeter groups. The Coxeter matrix, M i j, is related to the n × n Schläfli matrix C with entries C i j = −2 cos , but the elements are modified, being proportional to the dot product of the pairwise generators