1.
Projection (linear algebra)
–
In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself such that P2 = P. That is, whenever P is applied twice to any value, though abstract, this definition of projection formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on an object by examining the effect of the projection on points in the object. For example, the function maps the point in three-dimensional space R3 to the point is an orthogonal projection onto the x–y plane. This function is represented by the matrix P =, the action of this matrix on an arbitrary vector is P =. To see that P is indeed a projection, i. e. P = P2, a simple example of a non-orthogonal projection is P =. Via matrix multiplication, one sees that P2 = = = P. proving that P is indeed a projection, the projection P is orthogonal if and only if α =0. Let W be a finite dimensional space and P be a projection on W. Suppose the subspaces U and V are the range and kernel of P respectively, then P has the following properties, By definition, P is idempotent. P is the identity operator I on U ∀ x ∈ U, P x = x and we have a direct sum W = U ⊕ V. Every vector x ∈ W may be decomposed uniquely as x = u + v with u = P x and v = x − P x = x, the range and kernel of a projection are complementary, as are P and Q = I − P. The operator Q is also a projection and the range and kernel of P become the kernel and range of Q and we say P is a projection along V onto U and Q is a projection along U onto V. In infinite dimensional spaces, the spectrum of a projection is contained in as −1 =1 λ I +1 λ P. Only 0 or 1 can be an eigenvalue of a projection, the corresponding eigenspaces are the kernel and range of the projection. Decomposition of a space into direct sums is not unique in general. Therefore, given a subspace V, there may be many projections whose range is V, if a projection is nontrivial it has minimal polynomial x 2 − x = x, which factors into distinct roots, and thus P is diagonalizable. The product of projections is not, in general, a projection, if projections commute, then their product is a projection. When the vector space W has a product and is complete the concept of orthogonality can be used
2.
Coxeter element
–
In mathematics, the Coxeter number h is the order of a Coxeter element of an irreducible Coxeter group. Note that this assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple classes of Coxeter elements. There are many different ways to define the Coxeter number h of a root system. A Coxeter element is a product of all simple reflections, the product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order. The Coxeter number is the number of roots divided by the rank, the number of reflections in the Coxeter group is half the number of roots. The Coxeter number is the order of any Coxeter element, if the highest root is ∑miαi for simple roots αi, then the Coxeter number is 1 + ∑mi The dimension of the corresponding Lie algebra is n, where n is the rank and h is the Coxeter number. The Coxeter number is the highest degree of an invariant of the Coxeter group acting on polynomials. Notice that if m is a degree of a fundamental invariant then so is h +2 − m, the eigenvalues of a Coxeter element are the numbers e2πi/h as m runs through the degrees of the fundamental invariants. Since this starts with m =2, these include the primitive hth root of unity, ζh = e2πi/h, an example, has h=30, so 64*30/g =12 -3 -6 -5 + 4/3 + 4/5 = 2/15, so g = 1920*15/2= 960*15 =14400. Coxeter elements of A n −1 ≅ S n, considered as the group on n elements, are n-cycles, for simple reflections the adjacent transpositions, …. The dihedral group Dihm is generated by two reflections that form an angle of 2 π /2 m, and thus their product is a rotation by 2 π / m. For a given Coxeter element w, there is a unique plane P on which w acts by rotation by 2π/h and this is called the Coxeter plane and is the plane on which P has eigenvalues e2πi/h and e−2πi/h = e2πi/h. This plane was first systematically studied in, and subsequently used in to provide uniform proofs about properties of Coxeter elements, for polytopes, a vertex may map to zero, as depicted below. Projections onto the Coxeter plane are depicted below for the Platonic solids, in three dimensions, the symmetry of a regular polyhedron, with one directed petrie polygon marked, defined as a composite of 3 reflections, has rotoinversion symmetry Sh, order h. Adding a mirror, the symmetry can be doubled to symmetry, Dhd. In orthogonal 2D projection, this becomes dihedral symmetry, Dihh, in four dimension, the symmetry of a regular polychoron, with one directed petrie polygon marked is a double rotation, defined as a composite of 4 reflections, with symmetry +1/h, order h. In five dimension, the symmetry of a regular polyteron, with one directed petrie polygon marked, is represented by the composite of 5 reflections
3.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
4.
Uniform 6-polytope
–
In six-dimensional geometry, a uniform polypeton is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes, the complete set of convex uniform polypeta has not been determined, but most can be made as Wythoff constructions from a small set of symmetry groups. These construction operations are represented by the permutations of rings of the Coxeter-Dynkin diagrams, each combination of at least one ring on every connected group of nodes in the diagram produces a uniform 6-polytope. The simplest uniform polypeta are regular polytopes, the 6-simplex, the 6-cube, Regular polytopes,1852, Ludwig Schläfli proved in his manuscript Theorie der vielfachen Kontinuität that there are exactly 3 regular polytopes in 5 or more dimensions. Convex uniform polytopes,1940, The search was expanded systematically by H. S. M, Coxeter in his publication Regular and Semi-Regular Polytopes. Nonregular uniform star polytopes, Ongoing, Thousands of nonconvex uniform polypeta are known, participating researchers include Jonathan Bowers, Richard Klitzing and Norman Johnson. Uniform 6-polytopes with reflective symmetry can be generated by these four Coxeter groups, There are four fundamental reflective symmety groups which generate 153 unique uniform 6-polytopes. Uniform prism There are 6 categorical uniform prisms based on the uniform 5-polytopes, Uniform duoprism There are 11 categorical uniform duoprismatic families of polytopes based on Cartesian products of lower-dimensional uniform polytopes. Each combination of at least one ring on every connected group produces a uniform prismatic 6-polytope, in addition, there are 105 uniform 6-polytope constructions based on prisms of the uniform 5-polytopes. In addition, there are many uniform 6-polytope based on. There are 32+4−1=35 forms, derived by marking one or more nodes of the Coxeter-Dynkin diagram and they are named by Norman Johnson from the Wythoff construction operations upon regular 6-simplex. Bowers-style acronym names are given in parentheses for cross-referencing, the A6 family has symmetry of order 5040. The coordinates of uniform 6-polytopes with 6-simplex symmetry can be generated as permutations of simple integers in 7-space, see also list of A6 polytopes for graphs of these polytopes. There are 63 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings, the B6 family has symmetry of order 46080. They are named by Norman Johnson from the Wythoff construction operations upon the regular 6-cube, Bowers names and acronym names are given for cross-referencing. See also list of B6 polytopes for graphs of these polytopes, the D6 family has symmetry of order 23040. This family has 3×16−1=47 Wythoffian uniform polytopes, generated by marking one or more nodes of the D6 Coxeter-Dynkin diagram, of these,31 are repeated from the B6 family and 16 are unique to this family. The 16 unique forms are enumerated below, bowers-style acronym names are given for cross-referencing
5.
Rectification (geometry)
–
In Euclidean geometry, rectification or complete-truncation is the process of truncating a polytope by marking the midpoints of all its edges, and cutting off its vertices at those points. The resulting polytope will be bounded by vertex figure facets and the facets of the original polytope. A rectification operator is denoted by the symbol r, for example, r is the rectified cube. Conway polyhedron notation uses ambo for this operator, in graph theory this operation creates a medial graph. Rectification is the point of a truncation process. The highest degree of rectification creates the dual polytope, a rectification truncates edges to points. A birectification truncates faces to points, a trirectification truncates cells to points, and so on. New vertices are placed at the center of the edges of the original polygon, each platonic solid and its dual have the same rectified polyhedron. The rectified polyhedron turns out to be expressible as the intersection of the original platonic solid with an appropriated scaled concentric version of its dual, the rectified octahedron, whose dual is the cube, is the cuboctahedron. The rectified icosahedron, whose dual is the dodecahedron, is the icosidodecahedron, a rectified square tiling is a square tiling. A rectified triangular tiling or hexagonal tiling is a trihexagonal tiling, examples If a polyhedron is not regular, the edge midpoints surrounding a vertex may not be coplanar. The resulting medial graph remains polyhedral, so by Steinitzs theorem it can be represented as a polyhedron, the Conway polyhedron notation equivalent to rectification is ambo, represented by a. Applying twice aa, is Conways expand operation, e, which is the same as Johnsons cantellation operation, t0,2 generated from regular polyhedral, each Convex regular 4-polytope has a rectified form as a uniform 4-polytope. Its rectification will have two types, a rectified polyhedron left from the original cells and polyhedron as new cells formed by each truncated vertex. A rectified is not the same as a rectified, however, a further truncation, called bitruncation, is symmetric between a 4-polytope and its dual. Examples A first rectification truncates edges down to points, If a polytope is regular, this form is represented by an extended Schläfli symbol notation t1 or r. A second rectification, or birectification, truncates faces down to points, If regular it has notation t2 or 2r. For polyhedra, a birectification creates a dual polyhedron, higher degree rectifications can be constructed for higher dimensional polytopes
6.
6-simplex
–
In geometry, a 6-simplex is a self-dual regular 6-polytope. It has 7 vertices,21 edges,35 triangle faces,35 tetrahedral cells,21 5-cell 4-faces and its dihedral angle is cos−1, or approximately 80. 41°. It can also be called a heptapeton, or hepta-6-tope, as a 7-facetted polytope in 6-dimensions, the name heptapeton is derived from hepta for seven facets in Greek and -peta for having five-dimensional facets, and -on. Jonathan Bowers gives a heptapeton the acronym hop, the regular 6-simplex is one of 35 uniform 6-polytopes based on the Coxeter group, all shown here in A6 Coxeter plane orthographic projections. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 6D uniform polytopes x3o3o3o3o - hix, archived from the original on 4 February 2007. Polytopes of Various Dimensions Multi-dimensional Glossary
7.
Euler characteristic
–
It is commonly denoted by χ. The Euler characteristic was originally defined for polyhedra and used to prove theorems about them. Leonhard Euler, for whom the concept is named, was responsible for much of early work. In modern mathematics, the Euler characteristic arises from homology and, more abstractly, any convex polyhedrons surface has Euler characteristic V − E + F =2. This equation is known as Eulers polyhedron formula and it corresponds to the Euler characteristic of the sphere, and applies identically to spherical polyhedra. An illustration of the formula on some polyhedra is given below and this version holds both for convex polyhedra and the non-convex Kepler-Poinsot polyhedra. Projective polyhedra all have Euler characteristic 1, like the real plane, while the surfaces of toroidal polyhedra all have Euler characteristic 0. The Euler characteristic can be defined for connected plane graphs by the same V − E + F formula as for polyhedral surfaces, the Euler characteristic of any plane connected graph G is 2. This is easily proved by induction on the number of determined by G. For trees, E = V −1 and F =1, if G has C components, the same argument by induction on F shows that V − E + F − C =1. One of the few graph theory papers of Cauchy also proves this result, via stereographic projection the plane maps to the two-dimensional sphere, such that a connected graph maps to a polygonal decomposition of the sphere, which has Euler characteristic 2. This viewpoint is implicit in Cauchys proof of Eulers formula given below, there are many proofs of Eulers formula. One was given by Cauchy in 1811, as follows and it applies to any convex polyhedron, and more generally to any polyhedron whose boundary is topologically equivalent to a sphere and whose faces are topologically equivalent to disks. Remove one face of the polyhedral surface, after this deformation, the regular faces are generally not regular anymore. The number of vertices and edges has remained the same, therefore, proving Eulers formula for the polyhedron reduces to proving V − E + F =1 for this deformed, planar object. If there is a face more than three sides, draw a diagonal—that is, a curve through the face connecting two vertices that arent connected yet. This adds one edge and one face and does not change the number of vertices, continue adding edges in this manner until all of the faces are triangular. This decreases the number of edges and faces by one each and does not change the number of vertices, remove a triangle with two edges shared by the exterior of the network, as illustrated by the third graph
8.
Coxeter group
–
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups, however, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced as abstractions of reflection groups, and finite Coxeter groups were classified in 1935, Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the groups of regular polytopes. The condition m i j = ∞ means no relation of the form m should be imposed, the pair where W is a Coxeter group with generators S = is called a Coxeter system. Note that in general S is not uniquely determined by W, for example, the Coxeter groups of type B3 and A1 × A3 are isomorphic but the Coxeter systems are not equivalent. A number of conclusions can be drawn immediately from the above definition, the relation m i i =1 means that 1 =2 =1 for all i, as such the generators are involutions. If m i j =2, then the r i and r j commute. This follows by observing that x x = y y =1, in order to avoid redundancy among the relations, it is necessary to assume that m i j = m j i. This follows by observing that y y =1, together with m =1 implies that m = m y y = y m y = y y =1. Alternatively, k and k are elements, as y k y −1 = k y y −1 = k. The Coxeter matrix is the n × n, symmetric matrix with entries m i j, indeed, every symmetric matrix with positive integer and ∞ entries and with 1s on the diagonal such that all nondiagonal entries are greater than 1 serves to define a Coxeter group. The Coxeter matrix can be encoded by a Coxeter diagram. The vertices of the graph are labelled by generator subscripts, vertices i and j are adjacent if and only if m i j ≥3. An edge is labelled with the value of m i j whenever the value is 4 or greater, in particular, two generators commute if and only if they are not connected by an edge. Furthermore, if a Coxeter graph has two or more connected components, the group is the direct product of the groups associated to the individual components. Thus the disjoint union of Coxeter graphs yields a product of Coxeter groups. The Coxeter matrix, M i j, is related to the n × n Schläfli matrix C with entries C i j = −2 cos , but the elements are modified, being proportional to the dot product of the pairwise generators
9.
Vertex figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
10.
Uniform polytope
–
A uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons and this is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures are allowed, which expand the possible solutions. A strict definition requires uniform polytopes to be finite, while a more expansive definition allows uniform honeycombs of Euclidean, nearly every uniform polytope can be generated by a Wythoff construction, and represented by a Coxeter diagram. Notable exceptions include the antiprism in four dimensions. Equivalently, the Wythoffian polytopes can be generated by applying basic operations to the regular polytopes in that dimension and this approach was first used by Johannes Kepler, and is the basis of the Conway polyhedron notation. Regular n-polytopes have n orders of rectification, the zeroth rectification is the original form. The th rectification is the dual, an extended Schläfli symbol can be used for representing rectified forms, with a single subscript, k-th rectification = tk = kr. Truncation operations that can be applied to regular n-polytopes in any combination, the resulting Coxeter diagram has two ringed nodes, and the operation is named for the distance between them. Truncation cuts vertices, cantellation cuts edges, runcination cuts faces, each higher operation also cuts lower ones too, so a cantellation also truncates vertices. T0,1 or t, Truncation - applied to polygons, a truncation removes vertices, and inserts a new facet in place of each former vertex. Faces are truncated, doubling their edges and it can be seen as rectifying its rectification. A cantellation truncates both vertices and edges and replaces them with new facets, cells are replaced by topologically expanded copies of themselves. There are higher cantellations also, bicantellation t1,3 or r2r, tricantellation t2,4 or r3r, quadricantellation t3,5 or r4r, etc. t0,1,2 or tr, Cantitruncation - applied to polyhedra and higher. It can be seen as a truncation of its rectification, a cantitruncation truncates both vertices and edges and replaces them with new facets. Cells are replaced by topologically expanded copies of themselves, runcination truncates vertices, edges, and faces, replacing them each with new facets. 4-faces are replaced by topologically expanded copies of themselves, There are higher runcinations also, biruncination t1,4, triruncination t2,5, etc. t0,4 or 2r2r, Sterication - applied to Uniform 5-polytopes and higher. It can be seen as birectifying its birectification, Sterication truncates vertices, edges, faces, and cells, replacing each with new facets
11.
Convex polytope
–
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn. Some authors use the terms polytope and convex polyhedron interchangeably. In addition, some require a polytope to be a bounded set. The terms bounded/unbounded convex polytope will be used whenever the boundedness is critical to the discussed issue. Yet other texts treat a convex n-polytope as a surface or -manifold, Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. A comprehensive and influential book in the subject, called Convex Polytopes, was published in 1967 by Branko Grünbaum, in 2003 the 2nd edition of the book was published, with significant additional material contributed by new writers. In Grünbaums book, and in other texts in discrete geometry. Grünbaum points out that this is solely to avoid the repetition of the word convex. A polytope is called if it is an n-dimensional object in Rn. Many examples of bounded convex polytopes can be found in the article polyhedron, a convex polytope may be defined in a number of ways, depending on what is more suitable for the problem at hand. Grünbaums definition is in terms of a set of points in space. Other important definitions are, as the intersection of half-spaces and as the hull of a set of points. This is equivalent to defining a bounded convex polytope as the hull of a finite set of points. Such a definition is called a vertex representation, for a compact convex polytope, the minimal V-description is unique and it is given by the set of the vertices of the polytope. A convex polytope may be defined as an intersection of a number of half-spaces. Such definition is called a half-space representation, there exist infinitely many H-descriptions of a convex polytope. However, for a convex polytope, the minimal H-description is in fact unique and is given by the set of the facet-defining halfspaces. A closed half-space can be written as an inequality, a 1 x 1 + a 2 x 2 + ⋯ + a n x n ≤ b where n is the dimension of the space containing the polytope under consideration
12.
Isogonal figure
–
In geometry, a polytope is isogonal or vertex-transitive if, loosely speaking, all its vertices are equivalent. That implies that each vertex is surrounded by the kinds of face in the same or reverse order. Technically, we say that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope is transitive on its vertices, all vertices of a finite n-dimensional isogonal figure exist on an -sphere. The term isogonal has long used for polyhedra. Vertex-transitive is a synonym borrowed from modern ideas such as symmetry groups, all regular polygons, apeirogons and regular star polygons are isogonal. The dual of a polygon is an isotoxal polygon. Some even-sided polygons and apeirogons which alternate two edge lengths, for example a rectangle, are isogonal, all planar isogonal 2n-gons have dihedral symmetry with reflection lines across the mid-edge points. An isogonal polyhedron and 2D tiling has a kind of vertex. An isogonal polyhedron with all faces is also a uniform polyhedron. Geometrically distorted variations of uniform polyhedra and tilings can also be given the vertex configuration, isogonal polyhedra and 2D tilings may be further classified, Regular if it is also isohedral and isotoxal, this implies that every face is the same kind of regular polygon. Quasi-regular if it is also isotoxal but not isohedral, semi-regular if every face is a regular polygon but it is not isohedral or isotoxal. Uniform if every face is a polygon, i. e. it is regular, quasiregular or semi-regular. Noble if it is also isohedral and these definitions can be extended to higher-dimensional polytopes and tessellations. Most generally, all uniform polytopes are isogonal, for example, the dual of an isogonal polytope is called an isotope which is transitive on its facets. A polytope or tiling may be called if its vertices form k transitivity classes. A more restrictive term, k-uniform is defined as a figure constructed only from regular polygons. They can be represented visually with colors by different uniform colorings, edge-transitive Face-transitive Peter R. Cromwell, Polyhedra, Cambridge University Press 1997, ISBN 0-521-55432-2, p.369 Transitivity Grünbaum, Branko, Shephard, G. C
13.
Rectified 7-orthoplexes
–
In seven-dimensional geometry, a rectified 7-orthoplex is a convex uniform 7-polytope, being a rectification of the regular 7-orthoplex. There are unique 7 degrees of rectifications, the zeroth being the 7-orthoplex, vertices of the rectified 7-orthoplex are located at the edge-centers of the 7-orthoplex. Vertices of the birectified 7-orthoplex are located in the face centers of the 7-orthoplex. Vertices of the trirectified 7-orthoplex are located in the cell centers of the 7-orthoplex. The rectified 7-orthoplex is the figure for the demihepteractic honeycomb. The rectified 7-orthoplexs 84 vertices represent the number of a sphere-packing constructed from this honeycomb. Cartesian coordinates for the vertices of a rectified heptacross, centered at the origin, edge length 2 are all permutations of, Its 84 vertices represent the root vectors of the simple Lie group D7. The vertices can be seen in 3 hyperplanes, with the 21 vertices rectified 6-simplexs cells on opposite sides, when combined with the 14 vertices of the 7-orthoplex, these vertices represent the 98 root vectors of the B7 and C7 simple Lie groups. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, o3x3o3o3o3o4o - rez, o3o3x3o3o3o4o - barz Olshevsky, George. Archived from the original on 4 February 2007, Polytopes of Various Dimensions Multi-dimensional Glossary
14.
Dihedral group
–
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of groups, and they play an important role in group theory, geometry. The notation for the group of order n differs in geometry. In geometry, Dn or Dihn refers to the symmetries of the n-gon, in abstract algebra, Dn refers to the dihedral group of order n. The geometric convention is used in this article, a regular polygon with n sides has 2 n different symmetries, n rotational symmetries and n reflection symmetries. Usually, we take n ≥3 here. The associated rotations and reflections make up the dihedral group D n, if n is odd, each axis of symmetry connects the midpoint of one side to the opposite vertex. If n is even, there are n/2 axes of symmetry connecting the midpoints of opposite sides, in either case, there are n axes of symmetry and 2 n elements in the symmetry group. Reflecting in one axis of symmetry followed by reflecting in another axis of symmetry produces a rotation through twice the angle between the axes, as with any geometric object, the composition of two symmetries of a regular polygon is again a symmetry of this object. With composition of symmetries to produce another as the binary operation, the following Cayley table shows the effect of composition in the group D3. R0 denotes the identity, r1 and r2 denote counterclockwise rotations by 120° and 240° respectively, for example, s2s1 = r1, because the reflection s1 followed by the reflection s2 results in a rotation of 120°. The order of elements denoting the composition is right to left, the composition operation is not commutative. In all cases, addition and subtraction of subscripts are to be performed using modular arithmetic with modulus n, if we center the regular polygon at the origin, then elements of the dihedral group act as linear transformations of the plane. This lets us represent elements of Dn as matrices, with composition being matrix multiplication and this is an example of a group representation. For example, the elements of the group D4 can be represented by the eight matrices. In general, the matrices for elements of Dn have the following form, rk is a rotation matrix, expressing a counterclockwise rotation through an angle of 2πk/n. Sk is a reflection across a line makes an angle of πk/n with the x-axis. Further equivalent definitions of Dn are, D1 is isomorphic to Z2, D2 is isomorphic to K4, the Klein four-group. D1 and D2 are exceptional in that, D1 and D2 are the only abelian dihedral groups, Dn is a subgroup of the symmetric group Sn for n ≥3
15.
A6 polytope
–
In 6-dimensional geometry, there are 35 uniform polytopes with A6 symmetry. There is one self-dual regular form, the 6-simplex with 7 vertices, each can be visualized as symmetric orthographic projections in Coxeter planes of the A6 Coxeter group, and other subgroups. Symmetric orthographic projections of these 35 polytopes can be made in the A6, A5, A4, A3, for even k and symmetric ringed diagrams, symmetry doubles to. These 63 polytopes are each shown in these 5 symmetry planes, with vertices and edges drawn, Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M. Coxeter, Regular and Semi Regular Polytopes I, H. S. M, Coxeter, Regular and Semi-Regular Polytopes II, H. S. M. Coxeter, Regular and Semi-Regular Polytopes III, N. W, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. Dissertation, University of Toronto,1966 Klitzing, Richard
16.
Rectified 5-simplexes
–
In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex. There are three degrees of rectifications, including the zeroth, the 5-simplex itself. Vertices of the rectified 5-simplex are located at the edge-centers of the 5-simplex, vertices of the birectified 5-simplex are located in the triangular face centers of the 5-simplex. In five dimensional geometry, a rectified 5-simplex, is a uniform 5-polytope with 15 vertices,60 edges,80 triangular faces,45 cells and it is also called 03,1 for its branching Coxeter-Dynkin diagram, shown as. E. L. Elte identified it in 1912 as a semiregular polytope, the rectified 5-simplex,031, is second in a dimensional series of uniform polytopes, expressed by Coxeter as 13k series. The fifth figure is a Euclidean honeycomb,331, and the final is a noncompact hyperbolic honeycomb,431, each progressive uniform polytope is constructed from the previous as its vertex figure. Rectified hexateron The vertices of the rectified 5-simplex can be more simply positioned on a hyperplane in 6-space as permutations of or and these construction can be seen as facets of the rectified 6-orthoplex or birectified 6-cube respectively. The birectified 5-simplex is isotopic, with all 12 of its facets as rectified 5-cells and it has 20 vertices,90 edges,120 triangular faces,60 cells. E. L. Elte identified it in 1912 as a semiregular polytope and it is also called 02,2 for its branching Coxeter-Dynkin diagram, shown as. It is seen in the figure of the 6-dimensional 122. Birectified hexateron dodecateron The A5 projection has an appearance to Metatrons Cube. The birectified 5-simplex is the intersection of two regular 5-simplexes in dual configuration, the vertices of a birectification exist at the center of the faces of the original polytope. It is also the intersection of a 6-cube with the hyperplane that bisects the 6-cubes long diagonal orthogonally, in this sense it is the 5-dimensional analog of the regular hexagon, octahedron, and bitruncated 5-cell. This characterization yields simple coordinates for the vertices of a birectified 5-simplex in 6-space, the vertices of the birectified 5-simplex can also be positioned on a hyperplane in 6-space as permutations of. This construction can be seen as facets of the birectified 6-orthoplex, the birectified 5-simplex,022, is second in a dimensional series of uniform polytopes, expressed by Coxeter as k22 series. The birectified 5-simplex is the figure for the third, the 122. The fourth figure is a Euclidean honeycomb,222, and the final is a noncompact hyperbolic honeycomb,322, each progressive uniform polytope is constructed from the previous as its vertex figure. This polytope is the figure of the 6-demicube, and the edge figure of the uniform 231 polytope
17.
Petrie polygon
–
In geometry, a Petrie polygon for a regular polytope of n dimensions is a skew polygon such that every consecutive sides belong to one of the facets. The Petrie polygon of a polygon is the regular polygon itself. For every regular polytope there exists an orthogonal projection onto a plane such that one Petrie polygon becomes a regular polygon with the remainder of the interior to it. The plane in question is the Coxeter plane of the group of the polygon. These polygons and projected graphs are useful in visualizing symmetric structure of the regular polytopes. John Flinders Petrie was the son of Egyptologist Flinders Petrie. He was born in 1907 and as a schoolboy showed remarkable promise of mathematical ability, in periods of intense concentration he could answer questions about complicated four-dimensional objects by visualizing them. He first noted the importance of the skew polygons which appear on the surface of regular polyhedra. When my incredulity had begun to subside, he described them to me, one consisting of squares, six at each vertex, in 1938 Petrie collaborated with Coxeter, Patrick du Val, and H. T. Flather to produce The Fifty-Nine Icosahedra for publication, realizing the geometric facility of the skew polygons used by Petrie, Coxeter named them after his friend when he wrote Regular Polytopes. In 1972, a few months after his retirement, Petrie was killed by a car attempting to cross a motorway near his home in Surrey. The idea of Petrie polygons was later extended to semiregular polytopes, the Petrie polygon of the regular polyhedron has h sides, where h+2=24/. The regular duals, and, are contained within the same projected Petrie polygon, three of the Kepler–Poinsot polyhedra have hexagonal, and decagrammic, petrie polygons. The Petrie polygon projections are most useful for visualization of polytopes of dimension four and this table represents Petrie polygon projections of 3 regular families, and the exceptional Lie group En which generate semiregular and uniform polytopes for dimensions 4 to 8. Coxeter, H. S. M. Regular Polytopes, 3rd ed, Section 4.3 Flags and Orthoschemes, Section 11.3 Petrie polygons Ball, W. W. R. and H. S. M. Coxeter Mathematical Recreations and Essays, 13th ed. The Beauty of Geometry, Twelve Essays, Dover Publications LCCN 99-35678 Peter McMullen, Egon Schulte Abstract Regular Polytopes, ISBN 0-521-81496-0 Steinberg, Robert, ON THE NUMBER OF SIDES OF A PETRIE POLYGON Weisstein, Eric W. Petrie polygon. Weisstein, Eric W. Cross polytope graphs, Weisstein, Eric W. Gosset graph 3_21
18.
Heptagon
–
In geometry, a heptagon is a seven-sided polygon or 7-gon. The heptagon is also referred to as the septagon, using sept- together with the Greek suffix -agon meaning angle. A regular heptagon, in all sides and all angles are equal, has internal angles of 5π/7 radians. The area of a regular heptagon of side length a is given by, the apothem is half the cotangent of π /7, and the area of each of the 14 small triangles is one-fourth of the apothem. This expression cannot be rewritten without complex components, since the indicated cubic function is casus irreducibilis. As 7 is a Pierpont prime but not a Fermat prime and this type of construction is called a neusis construction. It is also constructible with compass, straightedge and angle trisector, the impossibility of straightedge and compass construction follows from the observation that 2 cos 2 π7 ≈1.247 is a zero of the irreducible cubic x3 + x2 − 2x −1. Consequently, this polynomial is the polynomial of 2cos, whereas the degree of the minimal polynomial for a constructible number must be a power of 2. An approximation for practical use with an error of about 0. 2% is shown in the drawing and it is attributed to Albrecht Dürer. Let A lie on the circumference of the circumcircle, then B D =12 B C gives an approximation for the edge of the heptagon. Example to illustrate the error, At a circumscribed circle radius r =1 m, since 7 is a prime number there is one subgroup with dihedral symmetry, Dih1, and 2 cyclic group symmetries, Z7, and Z1. These 4 symmetries can be seen in 4 distinct symmetries on the heptagon, john Conway labels these by a letter and group order. Full symmetry of the form is r14 and no symmetry is labeled a1. The dihedral symmetries are divided depending on whether they pass through vertices or edges, cyclic symmetries in the middle column are labeled as g for their central gyration orders. Each subgroup symmetry allows one or more degrees of freedom for irregular forms, only the g7 subgroup has no degrees of freedom but can seen as directed edges. However, no algebraic expressions with purely real terms exist for the solutions of this equation, because it is an example of casus irreducibilis. A heptagonal triangle has vertices coinciding with the first, second, and fourth vertices of a regular heptagon and angles π /7,2 π /7, thus its sides coincide with one side and two particular diagonals of the regular heptagon. Two kinds of star heptagons can be constructed from regular heptagons, labeled by Schläfli symbols, blue, and green star heptagons inside a red heptagon
19.
7-demicube
–
In geometry, a demihepteract or 7-demicube is a uniform 7-polytope, constructed from the 7-hypercube with alternated vertices truncated. It is part of an infinite family of uniform polytopes called demihypercubes. E. L. Elte identified it in 1912 as a semiregular polytope, Coxeter named this polytope as 141 from its Coxeter diagram, with a ring on one of the 1-length branches, and Schläfli symbol or. Cartesian coordinates for the vertices of a demihepteract centered at the origin are alternate halves of the hepteract, there are 95 uniform polytopes with D6 symmetry,63 are shared by the B6 symmetry, and 32 are unique, H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Klitzing, Richard. 7D uniform polytopes x3o3o *b3o3o3o3o - hesa, archived from the original on 4 February 2007
20.
Edge figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
21.
2 41 polytope
–
In 8-dimensional geometry, the 241 is a uniform 8-polytope, constructed within the symmetry of the E8 group. Its Coxeter symbol is 241, describing its bifurcating Coxeter-Dynkin diagram, the rectified 241 is constructed by points at the mid-edges of the 241. The birectified 241 is constructed by points at the face centers of the 241. The 241 is composed of 17,520 facets,144,960 6-faces,544,320 5-faces,1,209,600 4-faces,1,209,600 cells,483,840 faces,69,120 edges and its vertex figure is a 7-demicube. This polytope is a facet in the uniform tessellation,251 with Coxeter-Dynkin diagram and it is named 241 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence. The facet information can be extracted from its Coxeter-Dynkin diagram, Removing the node on the short branch leaves the 7-simplex. There are 17280 of these facets Removing the node on the end of the 4-length branch leaves the 231, there are 240 of these facets. They are centered at the positions of the 240 vertices in the 421 polytope, the vertex figure is determined by removing the ringed node and ringing the neighboring node. Petrie polygon projections can be 12,18, or 30-sided based on the E6, E7, the 2160 vertices are all displayed, but lower symmetry forms have projected positions overlapping, shown as different colored vertices. For comparison, a B6 coxeter group is also shown, the rectified 241 is a rectification of the 241 polytope, with vertices positioned at the mid-edges of the 241. The facet information can be extracted from its Coxeter-Dynkin diagram, Removing the node on the short branch leaves the rectified 7-simplex. Removing the node on the end of the 4-length branch leaves the rectified 231, Removing the node on the end of the 2-length branch leaves the 7-demicube,141. The vertex figure is determined by removing the ringed node and ringing the neighboring node and this makes the rectified 6-simplex prism. Petrie polygon projections can be 12,18, or 30-sided based on the E6, E7, the 2160 vertices are all displayed, but lower symmetry forms have projected positions overlapping, shown as different colored vertices. For comparison, a B6 coxeter group is also shown, list of E8 polytopes Elte, E. L. The Semiregular Polytopes of the Hyperspaces, Groningen, University of Groningen H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Klitzing, Richard. X3o3o3o *c3o3o3o3o - bay, o3x3o3o *c3o3o3o3o - robay
22.
Rectified 6-simplexes
–
In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex. There are three degrees of rectifications, including the zeroth, the 6-simplex itself. Vertices of the rectified 6-simplex are located at the edge-centers of the 6-simplex, vertices of the birectified 6-simplex are located in the triangular face centers of the 6-simplex. E. L. Elte identified it in 1912 as a semiregular polytope and it is also called 04,1 for its branching Coxeter-Dynkin diagram, shown as. Rectified heptapeton The vertices of the rectified 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the rectified 7-orthoplex. E. L. Elte identified it in 1912 as a semiregular polytope and it is also called 03,2 for its branching Coxeter-Dynkin diagram, shown as. Birectified heptapeton The vertices of the birectified 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the birectified 7-orthoplex. The rectified 6-simplex polytope is the figure of the 7-demicube. These polytopes are a part of 35 uniform 6-polytopes based on the Coxeter group, Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M. Coxeter, Regular and Semi Regular Polytopes I, H. S. M, Coxeter, Regular and Semi-Regular Polytopes II, H. S. M. Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. O3x3o3o3o3o - ril, o3x3o3o3o3o - bril Olshevsky, George, archived from the original on 4 February 2007. Polytopes of Various Dimensions Multi-dimensional Glossary
23.
Truncated 6-simplexes
–
In six-dimensional geometry, a truncated 6-simplex is a convex uniform 6-polytope, being a truncation of the regular 6-simplex. There are unique 3 degrees of truncation, vertices of the truncation 6-simplex are located as pairs on the edge of the 6-simplex. Vertices of the bitruncated 6-simplex are located on the faces of the 6-simplex. Vertices of the tritruncated 6-simplex are located inside the cells of the 6-simplex. Truncated heptapeton The vertices of the truncated 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the truncated 7-orthoplex. Bitruncated heptapeton The vertices of the bitruncated 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the bitruncated 7-orthoplex. The tritruncated 6-simplex is a uniform polytope, with 14 identical bitruncated 5-simplex facets. The tritruncated 6-simplex is the intersection of two 6-simplexes in dual configuration, and, tetradecapeton The vertices of the tritruncated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the bitruncated 7-orthoplex, alternately it can be centered on the origin as permutations of. Note, Symmetry doubled for Ak graphs with even k due to symmetrically-ringed Coxeter-Dynkin diagram, the truncated 6-simplex is one of 35 uniform 6-polytopes based on the Coxeter group, all shown here in A6 Coxeter plane orthographic projections. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, o3x3o3o3o3o - til, o3x3x3o3o3o - batal, o3o3x3x3o3o - fe Olshevsky, George. Archived from the original on 4 February 2007, Polytopes of Various Dimensions Multi-dimensional Glossary
24.
Cantellated 6-simplexes
–
In six-dimensional geometry, a cantellated 6-simplex is a convex uniform 6-polytope, being a cantellation of the regular 6-simplex. There are unique 4 degrees of cantellation for the 6-simplex, including truncations, small rhombated heptapeton The vertices of the cantellated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the cantellated 7-orthoplex, small prismated heptapeton The vertices of the bicantellated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the bicantellated 7-orthoplex, great rhombated heptapeton The vertices of the cantitruncated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the cantitruncated 7-orthoplex, great birhombated heptapeton The vertices of the bicantitruncated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the bicantitruncated 7-orthoplex, the truncated 6-simplex is one of 35 uniform 6-polytopes based on the Coxeter group, all shown here in A6 Coxeter plane orthographic projections. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, x3o3x3o3o3o - sril, o3x3o3x3o3o - sabril, x3x3x3o3o3o - gril, o3x3x3x3o3o - gabril Olshevsky, George. Archived from the original on 4 February 2007, Polytopes of Various Dimensions Multi-dimensional Glossary
25.
Runcinated 6-simplexes
–
In six-dimensional geometry, a runcinated 6-simplex is a convex uniform 6-polytope constructed as a runcination of the regular 6-simplex. There are 8 unique runcinations of the 6-simplex with permutations of truncations, small prismated heptapeton The vertices of the runcinated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the runcinated 7-orthoplex, small biprismated tetradecapeton The vertices of the biruncinted 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the biruncinated 7-orthoplex, note, Symmetry doubled for Ak graphs with even k due to symmetrically-ringed Coxeter-Dynkin diagram. Prismatotruncated heptapeton The vertices of the runcitruncated 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the runcitruncated 7-orthoplex. Biprismatorhombated heptapeton The vertices of the biruncitruncated 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the biruncitruncated 7-orthoplex. Prismatorhombated heptapeton The vertices of the runcicantellated 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the runcicantellated 7-orthoplex. Runcicantitruncated heptapeton Great prismated heptapeton The vertices of the runcicantitruncated 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the runcicantitruncated 7-orthoplex. Biruncicantitruncated heptapeton Great biprismated tetradecapeton The vertices of the biruncicantittruncated 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the biruncicantitruncated 7-orthoplex. Note, Symmetry doubled for Ak graphs with even k due to symmetrically-ringed Coxeter-Dynkin diagram, the truncated 6-simplex is one of 35 uniform 6-polytopes based on the Coxeter group, all shown here in A6 Coxeter plane orthographic projections. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, x3o3o3x3o3o - spil, o3x3o3o3x3o - sibpof, x3x3o3x3o3o - patal, o3x3x3o3x3o - bapril, x3o3x3x3o3o - pril, x3x3x3x3o3o - gapil, o3x3x3x3x3o - gibpof Olshevsky, George. Archived from the original on 4 February 2007, Polytopes of Various Dimensions Multi-dimensional Glossary
26.
Stericated 6-simplexes
–
In six-dimensional geometry, a stericated 6-simplex is a convex uniform 6-polytope with 4th order truncations of the regular 6-simplex. There are 8 unique sterications for the 6-simplex with permutations of truncations, cantellations, small cellated heptapeton The vertices of the stericated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the stericated 7-orthoplex, cellirhombated heptapeton The vertices of the steritruncated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the steritruncated 7-orthoplex, cellirhombated heptapeton The vertices of the stericantellated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the stericantellated 7-orthoplex, celligreatorhombated heptapeton The vertices of the stericanttruncated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the stericantitruncated 7-orthoplex, celliprismated heptapeton The vertices of the steriruncinated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the steriruncinated 7-orthoplex, celliprismatotruncated heptapeton The vertices of the steriruncittruncated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the steriruncitruncated 7-orthoplex, bistericantitruncated 6-simplex as t1,2,3,5 Celliprismatorhombated heptapeton The vertices of the steriruncitcantellated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the steriruncicantellated 7-orthoplex, great cellated heptapeton The vertices of the steriruncicantittruncated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the steriruncicantitruncated 7-orthoplex, the truncated 6-simplex is one of 35 uniform 6-polytopes based on the Coxeter group, all shown here in A6 Coxeter plane orthographic projections. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, archived from the original on 4 February 2007. Polytopes of Various Dimensions Multi-dimensional Glossary
27.
Pentellated 6-simplexes
–
In six-dimensional geometry, a pentellated 6-simplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-simplex. There are unique 10 degrees of pentellations of the 6-simplex with permutations of truncations, cantellations, runcinations, the simple pentellated 6-simplex is also called an expanded 6-simplex, constructed by an expansion operation applied to the regular 6-simplex. The highest form, the pentisteriruncicantitruncated 6-simplex, is called an omnitruncated 6-simplex with all of the nodes ringed, expanded 6-simplex Small terated tetradecapeton The vertices of the pentellated 6-simplex can be positioned in 7-space as permutations of. This construction is based on facets of the pentellated 7-orthoplex, a second construction in 7-space, from the center of a rectified 7-orthoplex is given by coordinate permutations of, Its 42 vertices represent the root vectors of the simple Lie group A6. It is the figure of the 6-simplex honeycomb. Note, Symmetry doubled for Ak graphs with even k due to symmetrically-ringed Coxeter-Dynkin diagram, teracellated heptapeton The vertices of the runcitruncated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the runcitruncated 7-orthoplex, teriprismated heptapeton The vertices of the runcicantellated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the penticantellated 7-orthoplex, terigreatorhombated heptapeton The vertices of the penticantitruncated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the penticantitruncated 7-orthoplex, tericellirhombated heptapeton The vertices of the pentiruncitruncated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the pentiruncitruncated 7-orthoplex, teriprismatorhombated tetradecapeton The vertices of the pentiruncicantellated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the pentiruncicantellated 7-orthoplex, note, Symmetry doubled for Ak graphs with even k due to symmetrically-ringed Coxeter-Dynkin diagram. Terigreatoprismated heptapeton The vertices of the pentiruncicantitruncated 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the pentiruncicantitruncated 7-orthoplex. Tericellitruncated tetradecapeton The vertices of the pentisteritruncated 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the pentisteritruncated 7-orthoplex. Note, Symmetry doubled for Ak graphs with even k due to symmetrically-ringed Coxeter-Dynkin diagram, Great teracellirhombated heptapeton The vertices of the pentistericantittruncated 6-simplex can be most simply positioned in 7-space as permutations of. This construction is based on facets of the pentistericantitruncated 7-orthoplex, the omnitruncated 6-simplex has 5040 vertices,15120 edges,16800 faces,8400 cells,1806 4-faces, and 126 5-faces. With 5040 vertices, it is the largest of 35 uniform 6-polytopes generated from the regular 6-simplex, pentisteriruncicantitruncated 6-simplex Omnitruncated heptapeton Great terated tetradecapeton The omnitruncated 6-simplex is the permutohedron of order 7. The omnitruncated 6-simplex is a zonotope, the Minkowski sum of seven line segments parallel to the seven lines through the origin, like all uniform omnitruncated n-simplices, the omnitruncated 6-simplex can tessellate space by itself, in this case 6-dimensional space with three facets around each hypercell. The vertices of the omnitruncated 6-simplex can be most simply positioned in 7-space as permutations of and this construction is based on facets of the pentisteriruncicantitruncated 7-orthoplex, t0,1,2,3,4,5