1.
Frame of reference
–
In physics, a frame of reference consists of an abstract coordinate system and the set of physical reference points that uniquely fix the coordinate system and standardize measurements. In n dimensions, n+1 reference points are sufficient to define a reference frame. Using rectangular coordinates, a frame may be defined with a reference point at the origin. In Einsteinian relativity, reference frames are used to specify the relationship between an observer and the phenomenon or phenomena under observation. In this context, the phrase often becomes observational frame of reference, a relativistic reference frame includes the coordinate time, which does not correspond across different frames moving relatively to each other. The situation thus differs from Galilean relativity, where all possible coordinate times are essentially equivalent, the need to distinguish between the various meanings of frame of reference has led to a variety of terms. For example, sometimes the type of system is attached as a modifier. Sometimes the state of motion is emphasized, as in rotating frame of reference, sometimes the way it transforms to frames considered as related is emphasized as in Galilean frame of reference. Sometimes frames are distinguished by the scale of their observations, as in macroscopic and microscopic frames of reference, in this sense, an observational frame of reference allows study of the effect of motion upon an entire family of coordinate systems that could be attached to this frame. On the other hand, a system may be employed for many purposes where the state of motion is not the primary concern. For example, a system may be adopted to take advantage of the symmetry of a system. In a still broader perspective, the formulation of many problems in physics employs generalized coordinates, normal modes or eigenvectors and it seems useful to divorce the various aspects of a reference frame for the discussion below. A coordinate system is a concept, amounting to a choice of language used to describe observations. Consequently, an observer in a frame of reference can choose to employ any coordinate system to describe observations made from that frame of reference. A change in the choice of coordinate system does not change an observers state of motion. This viewpoint can be found elsewhere as well, which is not to dispute that some coordinate systems may be a better choice for some observations than are others. Choice of what to measure and with what observational apparatus is a separate from the observers state of motion. D. Norton, The discussion is taken beyond simple space-time coordinate systems by Brading, extension to coordinate systems using generalized coordinates underlies the Hamiltonian and Lagrangian formulations of quantum field theory, classical relativistic mechanics, and quantum gravity