On-Line Encyclopedia of Integer Sequences
The On-Line Encyclopedia of Integer Sequences cited as Sloane's, is an online database of integer sequences. It was maintained by Neil Sloane while a researcher at AT&T Labs. Foreseeing his retirement from AT&T Labs in 2012 and the need for an independent foundation, Sloane agreed to transfer the intellectual property and hosting of the OEIS to the OEIS Foundation in October 2009. Sloane is president of the OEIS Foundation. OEIS records information on integer sequences of interest to both professional mathematicians and amateurs, is cited; as of September 2018 it contains over 300,000 sequences. Each entry contains the leading terms of the sequence, mathematical motivations, literature links, more, including the option to generate a graph or play a musical representation of the sequence; the database is searchable by subsequence. Neil Sloane started collecting integer sequences as a graduate student in 1965 to support his work in combinatorics; the database was at first stored on punched cards.
He published selections from the database in book form twice: A Handbook of Integer Sequences, containing 2,372 sequences in lexicographic order and assigned numbers from 1 to 2372. The Encyclopedia of Integer Sequences with Simon Plouffe, containing 5,488 sequences and assigned M-numbers from M0000 to M5487; the Encyclopedia includes the references to the corresponding sequences in A Handbook of Integer Sequences as N-numbers from N0001 to N2372 The Encyclopedia includes the A-numbers that are used in the OEIS, whereas the Handbook did not. These books were well received and after the second publication, mathematicians supplied Sloane with a steady flow of new sequences; the collection became unmanageable in book form, when the database had reached 16,000 entries Sloane decided to go online—first as an e-mail service, soon after as a web site. As a spin-off from the database work, Sloane founded the Journal of Integer Sequences in 1998; the database continues to grow at a rate of some 10,000 entries a year.
Sloane has managed'his' sequences for 40 years, but starting in 2002, a board of associate editors and volunteers has helped maintain the database. In 2004, Sloane celebrated the addition of the 100,000th sequence to the database, A100000, which counts the marks on the Ishango bone. In 2006, the user interface was overhauled and more advanced search capabilities were added. In 2010 an OEIS wiki at OEIS.org was created to simplify the collaboration of the OEIS editors and contributors. The 200,000th sequence, A200000, was added to the database in November 2011. Besides integer sequences, the OEIS catalogs sequences of fractions, the digits of transcendental numbers, complex numbers and so on by transforming them into integer sequences. Sequences of rationals are represented by two sequences: the sequence of numerators and the sequence of denominators. For example, the fifth-order Farey sequence, 1 5, 1 4, 1 3, 2 5, 1 2, 3 5, 2 3, 3 4, 4 5, is catalogued as the numerator sequence 1, 1, 1, 2, 1, 3, 2, 3, 4 and the denominator sequence 5, 4, 3, 5, 2, 5, 3, 4, 5.
Important irrational numbers such as π = 3.1415926535897... are catalogued under representative integer sequences such as decimal expansions, binary expansions, or continued fraction expansions. The OEIS was limited to plain ASCII text until 2011, it still uses a linear form of conventional mathematical notation. Greek letters are represented by their full names, e.g. mu for μ, phi for φ. Every sequence is identified by the letter A followed by six digits always referred to with leading zeros, e.g. A000315 rather than A315. Individual terms of sequences are separated by commas. Digit groups are not separated by periods, or spaces. In comments, etc. A represents the nth term of the sequence. Zero is used to represent non-existent sequence elements. For example, A104157 enumerates the "smallest prime of n² consecutive primes to form an n×n magic square of least magic constant, or 0 if no such magic square exists." The value of a is 2. But there is no such 2×2 magic square, so a is 0; this special usage has a solid mathematical basis in certain counting functions.
For example, the totient valence function. There are 4 solutions for 4, but no solutions for 14, hence a of A014197 is 0—there are no solutions. −1 is used for this purpose instead, as in A094076. The OEIS ma
Parity (mathematics)
In mathematics, parity is the property of an integer's inclusion in one of two categories: or odd. An integer is if it is divisible by two and odd if it is not even. For example, 6 is because there is no remainder when dividing it by 2. By contrast, 3, 5, 7, 21 leave a remainder of 1 when divided by 2. Examples of numbers include −4, 0, 82 and 178. In particular, zero is an number; some examples of odd numbers are −5, 3, 29, 73. A formal definition of an number is that it is an integer of the form n = 2k, where k is an integer, it is important to realize that the above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings; the sets of and odd numbers can be defined as following: Even = Odd = A number expressed in the decimal numeral system is or odd according to whether its last digit is or odd.
That is, if the last digit is 1, 3, 5, 7, or 9 it is odd. The same idea will work using any base. In particular, a number expressed in the binary numeral system is odd if its last digit is 1 and if its last digit is 0. In an odd base, the number is according to the sum of its digits – it is if and only if the sum of its digits is even; the following laws can be verified using the properties of divisibility. They are a special case of rules in modular arithmetic, are used to check if an equality is to be correct by testing the parity of each side; as with ordinary arithmetic and addition are commutative and associative in modulo 2 arithmetic, multiplication is distributive over addition. However, subtraction in modulo 2 is identical to addition, so subtraction possesses these properties, not true for normal integer arithmetic. Even ± = even; the division of two whole numbers does not result in a whole number. For example, 1 divided by 4 equals 1/4, neither nor odd, since the concepts and odd apply only to integers.
But when the quotient is an integer, it will be if and only if the dividend has more factors of two than the divisor. The ancient Greeks considered 1, the monad, to be neither odd nor even; some of this sentiment survived into the 19th century: Friedrich Wilhelm August Fröbel's 1826 The Education of Man instructs the teacher to drill students with the claim that 1 is neither nor odd, to which Fröbel attaches the philosophical afterthought, It is well to direct the pupil's attention here at once to a great far-reaching law of nature and of thought. It is this, that between two different things or ideas there stands always a third, in a sort of balance, seeming to unite the two. Thus, there is here between odd and numbers one number, neither of the two. In form, the right angle stands between the acute and obtuse angles. A thoughtful teacher and a pupil taught to think for himself can scarcely help noticing this and other important laws. Integer coordinates of points in Euclidean spaces of two or more dimensions have a parity defined as the parity of the sum of the coordinates.
For instance, the face-centered cubic lattice and its higher-dimensional generalizations, the Dn lattices, consist of all of the integer points whose sum of coordinates is even. This feature manifests itself in chess, where the parity of a square is indicated by its color: bishops are constrained to squares of the same parity; this form of parity was famously used to solve the mutilated chessboard problem: if two opposite corner squares are removed from a chessboard the remaining board cannot be covered by dominoes, because each domino covers one square of each parity and there are two more squares of one parity than of the other. The parity of an ordinal number may be defined to be if the number is a limit ordinal, or a limit ordinal plus a finite number, odd otherwise. Let R be a commutative ring and let I be an ideal of R whose index is 2. Elements of the coset 0 + I may be called while elements of the coset 1 + I may be called odd; as an example, let R = Z be the localization of Z at the prime ideal.
An element of R is or odd if and only if its numerator is so in Z. The numbers form an ideal in the ring of integers, but the odd numbers do not — this is clear from the fact that the identity element for addition, zero, is an element of the numbers only. An integer is if it is congruent to 0 modulo this ideal, in other words if it is congruent to 0 modulo 2, odd if it is congruent to 1 modulo 2. All prime numbers are odd, with one exception: the prime number 2. All known perfect numbers are even. Goldbach's conjecture states that every integer greater than 2 can be represented as a sum of two prime numbers. Modern computer calculations have shown this conjecture to
Michiel Hazewinkel
Michiel Hazewinkel is a Dutch mathematician, Emeritus Professor of Mathematics at the Centre for Mathematics and Computer and the University of Amsterdam known for his 1978 book Formal groups and applications and as editor of the Encyclopedia of Mathematics. Born in Amsterdam to Jan Hazewinkel and Geertrude Hendrika Werner, Hazewinkel studied at the University of Amsterdam, he received his BA in Mathematics and Physics in 1963, his MA in Mathematics with a minor in Philosophy in 1965 and his PhD in 1969 under supervision of Frans Oort and Albert Menalda for the thesis "Maximal Abelian Extensions of Local Fields". After graduation Hazewinkel started his academic career as Assistant Professor at the University of Amsterdam in 1969. In 1970 he became Associate Professor at the Erasmus University Rotterdam, where in 1972 he was appointed Professor of Mathematics at the Econometric Institute. Here he was thesis advisor of Roelof Stroeker, M. van de Vel, Jo Ritzen, Gerard van der Hoek. From 1973 to 1975 he was Professor at the Universitaire Instelling Antwerpen, where Marcel van de Vel was his PhD student.
From 1982 to 1985 he was appointed part-time Professor Extraordinarius in Mathematics at the Erasmus Universiteit Rotterdam, part-time Head of the Department of Pure Mathematics at the Centre for Mathematics and Computer in Amsterdam. In 1985 he was appointed Professor Extraordinarius in Mathematics at the University of Utrecht, where he supervised the promotion of Frank Kouwenhoven, Huib-Jan Imbens, J. Scholma and F. Wainschtein. At the Centre for Mathematics and Computer CWI in Amsterdam in 1988 he became Professor of Mathematics and head of the Department of Algebra and Geometry until his retirement in 2008. Hazewinkel has been managing editor for journals as Nieuw Archief voor Wiskunde since 1977, he was managing editor for the book series Mathematics and Its Applications for Kluwer Academic Publishers in 1977. Hazewinkel was member of 15 professional societies in the field of Mathematics, participated in numerous administrative tasks in institutes, Program Committee, Steering Committee, Consortiums and Boards.
In 1994 Hazewinkel was elected member of the International Academy of Computer Sciences and Systems. Hazewinkel has authored and edited several books, numerous articles. Books, selection: 1970. Géométrie algébrique-généralités-groupes commutatifs. With Michel Demazure and Pierre Gabriel. Masson & Cie. 1976. On invariants, canonical forms and moduli for linear, finite dimensional, dynamical systems. With Rudolf E. Kalman. Springer Berlin Heidelberg. 1978. Formal groups and applications. Vol. 78. Elsevier. 1993. Encyclopaedia of Mathematics. Ed. Vol. 9. Springer. Articles, a selection: Hazewinkel, Michiel. "Moduli and canonical forms for linear dynamical systems II: The topological case". Mathematical Systems Theory. 10: 363–385. Doi:10.1007/BF01683285. Archived from the original on 12 December 2013. Hazewinkel, Michiel. "On Lie algebras and finite dimensional filtering". Stochastics. 7: 29–62. Doi:10.1080/17442508208833212. Archived from the original on 12 December 2013. Hazewinkel, M.. J.. "Nonexistence of finite-dimensional filters for conditional statistics of the cubic sensor problem".
Systems & Control Letters. 3: 331–340. Doi:10.1016/0167-691190074-9. Hazewinkel, Michiel. "The algebra of quasi-symmetric functions is free over the integers". Advances in Mathematics. 164: 283–300. Doi:10.1006/aima.2001.2017. Homepage
Natural number
In mathematics, the natural numbers are those used for counting and ordering. In common mathematical terminology, words colloquially used for counting are "cardinal numbers" and words connected to ordering represent "ordinal numbers"; the natural numbers can, at times, appear as a convenient set of codes. Some definitions, including the standard ISO 80000-2, begin the natural numbers with 0, corresponding to the non-negative integers 0, 1, 2, 3, …, whereas others start with 1, corresponding to the positive integers 1, 2, 3, …. Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers; the natural numbers are a basis from which many other number sets may be built by extension: the integers, by including the neutral element 0 and an additive inverse for each nonzero natural number n. These chains of extensions make the natural numbers canonically embedded in the other number systems.
Properties of the natural numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics. In common language, for example in primary school, natural numbers may be called counting numbers both to intuitively exclude the negative integers and zero, to contrast the discreteness of counting to the continuity of measurement, established by the real numbers; the most primitive method of representing a natural number is to put down a mark for each object. A set of objects could be tested for equality, excess or shortage, by striking out a mark and removing an object from the set; the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers; the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1, 10, all the powers of 10 up to over 1 million.
A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds, 7 tens, 6 ones. The Babylonians had a place-value system based on the numerals for 1 and 10, using base sixty, so that the symbol for sixty was the same as the symbol for one, its value being determined from context. A much advance was the development of the idea that 0 can be considered as a number, with its own numeral; the use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, but they omitted such a digit when it would have been the last symbol in the number. The Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica; the use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628. However, 0 had been used as a number in the medieval computus, beginning with Dionysius Exiguus in 525, without being denoted by a numeral; the first systematic study of numbers as abstractions is credited to the Greek philosophers Pythagoras and Archimedes.
Some Greek mathematicians treated the number 1 differently than larger numbers, sometimes not as a number at all. Independent studies occurred at around the same time in India and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the exact nature of the natural numbers. A school of Naturalism stated that the natural numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized "God made the integers, all else is the work of man". In opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not natural but a consequence of definitions. Two classes of such formal definitions were constructed. Set-theoretical definitions of natural numbers were initiated by Frege and he defined a natural number as the class of all sets that are in one-to-one correspondence with a particular set, but this definition turned out to lead to paradoxes including Russell's paradox.
Therefore, this formalism was modified so that a natural number is defined as a particular set, any set that can be put into one-to-one correspondence with that set is said to have that number of elements. The second class of definitions was introduced by Charles Sanders Peirce, refined by Richard Dedekind, further explored by Giuseppe Peano, it is based on an axiomatization of the properties of ordinal numbers: each natural number has a
Mathematics
Mathematics includes the study of such topics as quantity, structure and change. Mathematicians use patterns to formulate new conjectures; when mathematical structures are good models of real phenomena mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation and the systematic study of the shapes and motions of physical objects. Practical mathematics has been a human activity from as far back; the research required to solve mathematical problems can take years or centuries of sustained inquiry. Rigorous arguments first appeared in Greek mathematics, most notably in Euclid's Elements. Since the pioneering work of Giuseppe Peano, David Hilbert, others on axiomatic systems in the late 19th century, it has become customary to view mathematical research as establishing truth by rigorous deduction from appropriately chosen axioms and definitions. Mathematics developed at a slow pace until the Renaissance, when mathematical innovations interacting with new scientific discoveries led to a rapid increase in the rate of mathematical discovery that has continued to the present day.
Mathematics is essential in many fields, including natural science, medicine and the social sciences. Applied mathematics has led to new mathematical disciplines, such as statistics and game theory. Mathematicians engage in pure mathematics without having any application in mind, but practical applications for what began as pure mathematics are discovered later; the history of mathematics can be seen as an ever-increasing series of abstractions. The first abstraction, shared by many animals, was that of numbers: the realization that a collection of two apples and a collection of two oranges have something in common, namely quantity of their members; as evidenced by tallies found on bone, in addition to recognizing how to count physical objects, prehistoric peoples may have recognized how to count abstract quantities, like time – days, years. Evidence for more complex mathematics does not appear until around 3000 BC, when the Babylonians and Egyptians began using arithmetic and geometry for taxation and other financial calculations, for building and construction, for astronomy.
The most ancient mathematical texts from Mesopotamia and Egypt are from 2000–1800 BC. Many early texts mention Pythagorean triples and so, by inference, the Pythagorean theorem seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry, it is in Babylonian mathematics that elementary arithmetic first appear in the archaeological record. The Babylonians possessed a place-value system, used a sexagesimal numeral system, still in use today for measuring angles and time. Beginning in the 6th century BC with the Pythagoreans, the Ancient Greeks began a systematic study of mathematics as a subject in its own right with Greek mathematics. Around 300 BC, Euclid introduced the axiomatic method still used in mathematics today, consisting of definition, axiom and proof, his textbook Elements is considered the most successful and influential textbook of all time. The greatest mathematician of antiquity is held to be Archimedes of Syracuse, he developed formulas for calculating the surface area and volume of solids of revolution and used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, in a manner not too dissimilar from modern calculus.
Other notable achievements of Greek mathematics are conic sections, trigonometry (Hipparchus of Nicaea, the beginnings of algebra. The Hindu–Arabic numeral system and the rules for the use of its operations, in use throughout the world today, evolved over the course of the first millennium AD in India and were transmitted to the Western world via Islamic mathematics. Other notable developments of Indian mathematics include the modern definition of sine and cosine, an early form of infinite series. During the Golden Age of Islam during the 9th and 10th centuries, mathematics saw many important innovations building on Greek mathematics; the most notable achievement of Islamic mathematics was the development of algebra. Other notable achievements of the Islamic period are advances in spherical trigonometry and the addition of the decimal point to the Arabic numeral system. Many notable mathematicians from this period were Persian, such as Al-Khwarismi, Omar Khayyam and Sharaf al-Dīn al-Ṭūsī. During the early modern period, mathematics began to develop at an accelerating pace in Western Europe.
The development of calculus by Newton and Leibniz in the 17th century revolutionized mathematics. Leonhard Euler was the most notable mathematician of the 18th century, contributing numerous theorems and discoveries; the foremost mathematician of the 19th century was the German mathematician Carl Friedrich Gauss, who made numerous contributions to fields such as algebra, differential geometry, matrix theory, number theory, statistics. In the early 20th century, Kurt Gödel transformed mathematics by publishing his incompleteness theorems, which show that any axiomatic system, consistent will contain unprovable propositions. Mathematics has since been extended, there has been a fruitful interaction between mathematics and science, to
Divisor
In mathematics, a divisor of an integer n called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one says that n is a multiple of m. An integer n is divisible by another integer m. If m and n are nonzero integers, more nonzero elements of an integral domain, it is said that m divides n, m is a divisor of n, or n is a multiple of m, this is written as m ∣ n, if there exists an integer k, or an element k of the integral domain, such that m k = n; this definition is sometimes extended to include zero. This does not add much to the theory, as 0 does not divide any other number, every number divides 0. On the other hand, excluding zero from the definition simplifies many statements. In ring theory, an element a is called a "zero divisor" only if it is nonzero and ab = 0 for a nonzero element b. Thus, there are no zero divisors among the integers. Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors.
For example, there are six divisors of 4. 1 and −1 divide every integer. Every integer is a divisor of itself. Integers divisible by 2 are called and integers not divisible by 2 are called odd. 1, −1, n and −n are known as the trivial divisors of n. A divisor of n, not a trivial divisor is known as a non-trivial divisor. A non-zero integer with at least one non-trivial divisor is known as a composite number, while the units −1 and 1 and prime numbers have no non-trivial divisors. There are divisibility rules that allow one to recognize certain divisors of a number from the number's digits. 7 is a divisor of 42 because 7 × 6 = 42, so we can say 7 ∣ 42. It can be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42; the non-trivial divisors of 6 are 2, −2, 3, −3. The positive divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42; the set of all positive divisors of 60, A = ordered by divisibility, has the Hasse diagram: There are some elementary rules: If a ∣ b and b ∣ c a ∣ c, i.e. divisibility is a transitive relation.
If a ∣ b and b ∣ a a = b or a = − b. If a ∣ b and a ∣ c a ∣ holds, as does a ∣. However, if a ∣ b and c ∣ b ∣ b does not always hold. If a ∣ b c, gcd = 1 a ∣ c; this is called Euclid's lemma. If p is a prime number and p ∣ a b p ∣ a or p ∣ b. A positive divisor of n, different from n is called a proper divisor or an aliquot part of n. A number that does not evenly leaves a remainder is called an aliquant part of n. An integer n > 1 {\displ