Geometry
Geometry is a branch of mathematics concerned with questions of shape, relative position of figures, the properties of space. A mathematician who works in the field of geometry is called a geometer. Geometry arose independently in a number of early cultures as a practical way for dealing with lengths and volumes. Geometry began to see elements of formal mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into an axiomatic form by Euclid, whose treatment, Euclid's Elements, set a standard for many centuries to follow. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC. Islamic scientists expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid analytic footing by mathematicians such as René Descartes and Pierre de Fermat. Since and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, describing spaces that lie beyond the normal range of human experience.
While geometry has evolved throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, planes, surfaces and curves, as well as the more advanced notions of manifolds and topology or metric. Geometry has applications to many fields, including art, physics, as well as to other branches of mathematics. Contemporary geometry has many subfields: Euclidean geometry is geometry in its classical sense; the mandatory educational curriculum of the majority of nations includes the study of points, planes, triangles, similarity, solid figures and analytic geometry. Euclidean geometry has applications in computer science and various branches of modern mathematics. Differential geometry uses techniques of linear algebra to study problems in geometry, it has applications in physics, including in general relativity. Topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this means dealing with large-scale properties of spaces, such as connectedness and compactness.
Convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues using techniques of real analysis. It has close connections to convex analysis and functional analysis and important applications in number theory. Algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques, it has applications including cryptography and string theory. Discrete geometry is concerned with questions of relative position of simple geometric objects, such as points and circles, it shares many principles with combinatorics. Computational geometry deals with algorithms and their implementations for manipulating geometrical objects. Although being a young area of geometry, it has many applications in computer vision, image processing, computer-aided design, medical imaging, etc; the earliest recorded beginnings of geometry can be traced to ancient Mesopotamia and Egypt in the 2nd millennium BC. Early geometry was a collection of empirically discovered principles concerning lengths, angles and volumes, which were developed to meet some practical need in surveying, construction and various crafts.
The earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, or frustum. Clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiter's position and motion within time-velocity space; these geometric procedures anticipated the Oxford Calculators, including the mean speed theorem, by 14 centuries. South of Egypt the ancient Nubians established a system of geometry including early versions of sun clocks. In the 7th century BC, the Greek mathematician Thales of Miletus used geometry to solve problems such as calculating the height of pyramids and the distance of ships from the shore, he is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales' Theorem. Pythagoras established the Pythagorean School, credited with the first proof of the Pythagorean theorem, though the statement of the theorem has a long history.
Eudoxus developed the method of exhaustion, which allowed the calculation of areas and volumes of curvilinear figures, as well as a theory of ratios that avoided the problem of incommensurable magnitudes, which enabled subsequent geometers to make significant advances. Around 300 BC, geometry was revolutionized by Euclid, whose Elements considered the most successful and influential textbook of all time, introduced mathematical rigor through the axiomatic method and is the earliest example of the format still used in mathematics today, that of definition, axiom and proof. Although most of the contents of the Elements were known, Euclid arranged them into a single, coherent logical framework; the Elements was known to all educated people in the West until the middle of the 20th century and its contents are still taught in geometry classes today. Archimedes of Syracuse used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, gave remarkably accurate approximations of Pi.
He studied the sp
Dual polyhedron
In geometry, any polyhedron is associated with a second dual figure, where the vertices of one correspond to the faces of the other and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all are geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron. Duality preserves the symmetries of a polyhedron. Therefore, for many classes of polyhedra defined by their symmetries, the duals belong to a symmetric class. Thus, the regular polyhedra – the Platonic solids and Kepler–Poinsot polyhedra – form dual pairs, where the regular tetrahedron is self-dual; the dual of an isogonal polyhedron, having equivalent vertices, is one, isohedral, having equivalent faces. The dual of an isotoxal polyhedron is isotoxal. Duality is related to reciprocity or polarity, a geometric transformation that, when applied to a convex polyhedron, realizes the dual polyhedron as another convex polyhedron.
There are many kinds of duality. The kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality; the duality of polyhedra is defined in terms of polar reciprocation about a concentric sphere. Here, each vertex is associated with a face plane so that the ray from the center to the vertex is perpendicular to the plane, the product of the distances from the center to each is equal to the square of the radius. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2; the vertices of the dual are the poles reciprocal to the face planes of the original, the faces of the dual lie in the polars reciprocal to the vertices of the original. Any two adjacent vertices define an edge, these will reciprocate to two adjacent faces which intersect to define an edge of the dual; this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, r 1 and r 2 the distances from its centre to the pole and its polar, then: r 1.
R 2 = r 0 2 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, as in the Dorman Luke construction described below. However, it is possible to reciprocate a polyhedron about any sphere, the resulting form of the dual will depend on the size and position of the sphere; the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point, this is taken to be the centroid. Failing that, a circumscribed sphere, inscribed sphere, or midsphere is used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, the corresponding element of its dual will go to infinity. Since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required'plane at infinity'; some theorists prefer to say that there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, in a manner suitable for making models.
The concept of duality here is related to the duality in projective geometry, where lines and edges are interchanged. Projective polarity works well enough for convex polyhedra, but for non-convex figures such as star polyhedra, when we seek to rigorously define this form of polyhedral duality in terms of projective polarity, various problems appear. Because of the definitional issues for geometric duality of non-convex polyhedra, Grünbaum argues that any proper definition of a non-convex polyhedron should include a notion of a dual polyhedron. Any convex polyhedron can be distorted into a canonical form, in which a unit midsphere exists tangent to every edge, such that the average position of the points of tangency is the center of the sphere; this form is unique up to congruences. If we reciprocate such a canonical polyhedron about its midsphere, the dual polyhedron will share the same edge-tangency points and so must be canonical, it is the canonical dual, the two together form a canonical dual pair.
When a pair of polyhedra cannot be obtained by reciprocation from each other, they may be called duals of each other as long as the vertices of one correspond to the faces of the other, the edges of one correspond to the edges of the other, in an incidence-preserving way. Such pairs of polyhedra are abstractly dual; the vertices and edges of a convex polyhedron form a graph, embedded on a topological sphere, the surface of the polyhedron. The same graph can be projected to form
Truncated order-7 triangular tiling
In geometry, the Order-7 truncated triangular tiling, sometimes called the hyperbolic soccerball, is a semiregular tiling of the hyperbolic plane. There are two hexagons and one heptagon on each vertex, forming a pattern similar to a conventional soccer ball with heptagons in place of pentagons, it has Schläfli symbol of t. This tiling is called a hyperbolic soccerball for its similarity to the truncated icosahedron pattern used on soccer balls. Small portions of it as a hyperbolic surface can be constructed in 3-space; the dual tiling is called a heptakis heptagonal tiling, named for being constructible as a heptagonal tiling with every heptagon divided into seven triangles by the center point. This hyperbolic tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations, Coxeter group symmetry. From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling. Drawing the tiles colored as red on the original faces, yellow at the original vertices, blue along the original edges, there are 8 forms.
Triangular tiling Order-3 heptagonal tiling Order-7 triangular tiling Tilings of regular polygons List of uniform tilings John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 "Chapter 10: Regular honeycombs in hyperbolic space"; the Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678. Weisstein, Eric W. "Hyperbolic tiling". MathWorld. Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld. Hyperbolic and Spherical Tiling Gallery KaleidoTile 3: Educational software to create spherical and hyperbolic tilings Hyperbolic Planar Tessellations, Don Hatch Geometric explorations on the hyperbolic football by Frank Sottile
Cantellation (geometry)
In geometry, a cantellation is an operation in any dimension that bevels a regular polytope at its edges and vertices, creating a new facet in place of each edge and vertex. The operation applies to regular tilings and honeycombs; this is rectifying its rectification. This operation is called expansion by Alicia Boole Stott, as imagined by taking the faces of the regular form moving them away from the center and filling in new faces in the gaps for each opened vertex and edge, it is represented by r or rr. For polyhedra, a cantellation operation offers a direct sequence from a regular polyhedron and its dual. Example cantellation sequence between a cube and octahedron For higher-dimensional polytopes, a cantellation offers a direct sequence from a regular polytope and its birectified form. A cuboctahedron would be a cantellated tetrahedron, as another example. Uniform polyhedron Uniform 4-polytope Coxeter, H. S. M. Regular Polytopes, Dover edition, ISBN 0-486-61480-8 Norman Johnson Uniform Polytopes, Manuscript N.
W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph. D. Dissertation, University of Toronto, 1966 Weisstein, Eric W. "Expansion". MathWorld
Expansion (geometry)
In geometry, expansion is a polytope operation where facets are separated and moved radially apart, new facets are formed at separated elements. Equivalently this operation can be imagined by keeping facets in the same position but reducing their size; the expansion of a regular polytope creates a uniform polytope, but the operation can be applied to any convex polytope, as demonstrated for polyhedra in Conway polyhedron notation. For polyhedra, an expanded polyhedron has all the faces of the original polyhedron, all the faces of the dual polyhedron, new square faces in place of the original edges. According to Coxeter, this multidimensional term was defined by Alicia Boole Stott for creating new polytopes starting from regular polytopes to construct new uniform polytopes; the expansion operation is symmetric with respect to its dual. The resulting figure contains the facets of both the regular and its dual, along with various prismatic facets filling the gaps created between intermediate dimensional elements.
It has somewhat different meanings by dimension. In a Wythoff construction, an expansion is generated by reflections from the last mirrors. In higher dimensions, lower dimensional expansions can be written with a subscript, so e2 is the same as t0,2 in any dimension. By dimension: A regular polygon expands into a regular 2n-gon; the operation is identical to truncation for polygons, e = e1 = t0,1 = t and has Coxeter-Dynkin diagram. A regular polyhedron expands into a polyhedron with vertex figure p.4.q.4. This operation for polyhedra is called cantellation, e = e2 = t0,2 = rr, has Coxeter diagram. For example, a rhombicuboctahedron can be called an expanded cube, expanded octahedron, as well as a cantellated cube or cantellated octahedron. A regular 4-polytope expands into a new 4-polytope with the original cells, new cells in place of the old vertices, p-gonal prisms in place of the old faces, r-gonal prisms in place of the old edges; this operation for 4-polytopes is called runcination, e = e3 = t0,3, has Coxeter diagram.
A regular 5-polytope expands into a new 5-polytope with facets, × prisms, × prisms, × duoprisms. This operation has Coxeter diagram; the general operator for expansion of a regular n-polytope is t0,n-1. New regular facets are added at each vertex, new prismatic polytopes are added at each divided edge, face... ridge, etc. Conway polyhedron notation Weisstein, Eric W. "Expansion". MathWorld. Coxeter, H. S. M. Regular Polytopes. 3rd edition, Dover, ISBN 0-486-61480-8. Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph. D. Dissertation, University of Toronto, 1966
Orbifold notation
In geometry, orbifold notation is a system, invented by William Thurston and popularized by the mathematician John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it describes the orbifold obtained by taking the quotient of Euclidean space by the group under consideration. Groups representable in this notation include the point groups on the sphere, the frieze groups and wallpaper groups of the Euclidean plane, their analogues on the hyperbolic plane; the following types of Euclidean transformation can occur in a group described by orbifold notation: reflection through a line translation by a vector rotation of finite order around a point infinite rotation around a line in 3-space glide-reflection, i.e. reflection followed by translation. All translations which occur are assumed to form a discrete subgroup of the group symmetries being described.
Each group is denoted in orbifold notation by a finite string made up from the following symbols: positive integers 1, 2, 3, … the infinity symbol, ∞ the asterisk, * the symbol o, called a wonder and a handle because it topologically represents a torus closed surface. Patterns repeat by two translation; the symbol ×, called a miracle and represents a topological crosscap where a pattern repeats as a mirror image without crossing a mirror line. A string written in boldface represents a group of symmetries of Euclidean 3-space. A string not written in boldface represents a group of symmetries of the Euclidean plane, assumed to contain two independent translations; each symbol corresponds to a distinct transformation: an integer n to the left of an asterisk indicates a rotation of order n around a gyration point an integer n to the right of an asterisk indicates a transformation of order 2n which rotates around a kaleidoscopic point and reflects through a line an × indicates a glide reflection the symbol ∞ indicates infinite rotational symmetry around a line.
By abuse of language, we might say that such a group is a subgroup of symmetries of the Euclidean plane with only one independent translation. The frieze groups occur in this way; the exceptional symbol o indicates that there are two linearly independent translations. An orbifold symbol is called good if it is not one of the following: p, pq, *p, *pq, for p,q>=2, p≠q. An object is chiral; the corresponding orbifold is non-orientable otherwise. The Euler characteristic of an orbifold can be read from its Conway symbol; each feature has a value: n without or before an asterisk counts as n − 1 n n after an asterisk counts as n − 1 2 n asterisk and × count as 1 o counts as 2. Subtracting the sum of these values from 2 gives the Euler characteristic. If the sum of the feature values is 2, the order is infinite, i.e. the notation represents a wallpaper group or a frieze group. Indeed, Conway's "Magic Theorem" indicates that the 17 wallpaper groups are those with the sum of the feature values equal to 2.
Otherwise, the order is 2 divided by the Euler characteristic. The following groups are isomorphic: 1* and *11 22 and 221 *22 and *221 2* and 2*1; this is. The symmetry of a 2D object without translational symmetry can be described by the 3D symmetry type by adding a third dimension to the object which does not add or spoil symmetry. For example, for a 2D image we can consider a piece of carton with that image displayed on one side, thus we have n• and *n•. The bullet is added on one- and two-dimensional groups to imply the existence of a fixed point. A 1D image can be drawn horizontally on a piece of carton, with a provision to avoid additional symmetry with respect to the line of the image, e.g. by drawing a horizontal bar under the image. Thus the discrete symmetry groups in one dimension are *•, *1•, ∞• and *∞•. Another way of constructing a 3D object from a 1D or 2D object for describing the symmetry is taking the Cartesian product of the object and an asymmetric 2D or 1D object, respectively.
*Schönflies's point group notation is extended here as infinite cases of the equivalent dihedral points symmetries §The diagram shows one fundamental domain in yellow, with reflection lines in blue, glide reflection lines in dashed green, translation normals in red, 2-fold gyration points as small green squares. A first few hyperbolic groups, ordered by their Euler characteristic are: Mutation of orbifolds Fibrifold notation - an extension of orbifold notation for 3d space groups John H. Conway, Olaf Delgado Friedrichs, Daniel H. Huson, W
Triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, C is denoted △ A B C. In Euclidean geometry any three points, when non-collinear, determine a unique triangle and a unique plane. In other words, there is only one plane that contains that triangle, every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; this article is about triangles in Euclidean geometry, in particular, the Euclidean plane, except where otherwise noted. Triangles can be classified according to the lengths of their sides: An equilateral triangle has all sides the same length. An equilateral triangle is a regular polygon with all angles measuring 60°. An isosceles triangle has two sides of equal length. An isosceles triangle has two angles of the same measure, namely the angles opposite to the two sides of the same length; some mathematicians define an isosceles triangle to have two equal sides, whereas others define an isosceles triangle as one with at least two equal sides.
The latter definition would make all equilateral triangles isosceles triangles. The 45–45–90 right triangle, which appears in the tetrakis square tiling, is isosceles. A scalene triangle has all its sides of different lengths. Equivalently, it has all angles of different measure. Hatch marks called tick marks, are used in diagrams of triangles and other geometric figures to identify sides of equal lengths. A side can be marked with a pattern of short line segments in the form of tally marks. In a triangle, the pattern is no more than 3 ticks. An equilateral triangle has the same pattern on all 3 sides, an isosceles triangle has the same pattern on just 2 sides, a scalene triangle has different patterns on all sides since no sides are equal. Patterns of 1, 2, or 3 concentric arcs inside the angles are used to indicate equal angles. An equilateral triangle has the same pattern on all 3 angles, an isosceles triangle has the same pattern on just 2 angles, a scalene triangle has different patterns on all angles since no angles are equal.
Triangles can be classified according to their internal angles, measured here in degrees. A right triangle has one of its interior angles measuring 90°; the side opposite to the right angle is the longest side of the triangle. The other two sides are called the catheti of the triangle. Right triangles obey the Pythagorean theorem: the sum of the squares of the lengths of the two legs is equal to the square of the length of the hypotenuse: a2 + b2 = c2, where a and b are the lengths of the legs and c is the length of the hypotenuse. Special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3–4–5 right triangle, where 32 + 42 = 52. In this situation, 3, 4, 5 are a Pythagorean triple; the other one is an isosceles triangle. Triangles that do not have an angle measuring 90° are called oblique triangles. A triangle with all interior angles measuring less than 90° is an acute triangle or acute-angled triangle.
If c is the length of the longest side a2 + b2 > c2, where a and b are the lengths of the other sides. A triangle with one interior angle measuring more than 90° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side a2 + b2 < c2, where a and b are the lengths of the other sides. A triangle with an interior angle of 180° is degenerate. A right degenerate triangle has collinear vertices. A triangle that has two angles with the same measure has two sides with the same length, therefore it is an isosceles triangle, it follows that in a triangle where all angles have the same measure, all three sides have the same length, such a triangle is therefore equilateral. Triangles are assumed to be two-dimensional plane figures. In rigorous treatments, a triangle is therefore called a 2-simplex. Elementary facts about triangles were presented by Euclid in books 1–4 of his Elements, around 300 BC; the sum of the measures of the interior angles of a triangle in Euclidean space is always 180 degrees.
This fact is equivalent to Euclid's parallel postulate. This allows determination of the measure of the third angle of any triangle given the measure of two angles. An exterior angle of a triangle is an angle, a linear pair to an interior angle; the measure of an exterior angle of a triangle is equal to the sum of the measures of the two interior angles that are not adjacent to it. The sum of the measures of the three exterior angles of any triangle is 360 degrees. Two triangles are said to be similar if every angle of one triangle has the same measure as the corresponding angle in the other triangle; the corresponding sides of similar triangles have lengths that are in the same proportion, this property is sufficient to establish similarity. Some basic theorems about similar triangles are: If and only if one pair of internal angles of two triangles have the sam