1.
Computational complexity theory
–
A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage. Other complexity measures are used, such as the amount of communication, the number of gates in a circuit. One of the roles of computational complexity theory is to determine the limits on what computers can. Closely related fields in computer science are analysis of algorithms. More precisely, computational complexity theory tries to classify problems that can or cannot be solved with appropriately restricted resources, a computational problem can be viewed as an infinite collection of instances together with a solution for every instance. The input string for a problem is referred to as a problem instance. In computational complexity theory, a problem refers to the question to be solved. In contrast, an instance of this problem is a rather concrete utterance, for example, consider the problem of primality testing. The instance is a number and the solution is yes if the number is prime, stated another way, the instance is a particular input to the problem, and the solution is the output corresponding to the given input. For this reason, complexity theory addresses computational problems and not particular problem instances, when considering computational problems, a problem instance is a string over an alphabet. Usually, the alphabet is taken to be the binary alphabet, as in a real-world computer, mathematical objects other than bitstrings must be suitably encoded. For example, integers can be represented in binary notation, and graphs can be encoded directly via their adjacency matrices and this can be achieved by ensuring that different representations can be transformed into each other efficiently. Decision problems are one of the objects of study in computational complexity theory. A decision problem is a type of computational problem whose answer is either yes or no. A decision problem can be viewed as a language, where the members of the language are instances whose output is yes. The objective is to decide, with the aid of an algorithm, if the algorithm deciding this problem returns the answer yes, the algorithm is said to accept the input string, otherwise it is said to reject the input. An example of a problem is the following

2.
Stephen Cook
–
Stephen Arthur Cook, OC OOnt is an American-Canadian computer scientist and mathematician who has made major contributions to the fields of complexity theory and proof complexity. He is currently a university professor at the University of Toronto, Department of Computer Science, Cook received his Bachelors degree in 1961 from the University of Michigan, and his Masters degree and Ph. D. from Harvard University, respectively in 1962 and 1966. He joined the University of California, Berkeley, mathematics department in 1966 as an assistant professor, Stephen Cook is considered one of the forefathers of computational complexity theory. During his PhD, Cook worked on complexity of functions, mainly on multiplication and this theorem was proven independently by Leonid Levin in the Soviet Union, and has thus been given the name the Cook-Levin theorem. The paper also formulated the most famous problem in computer science, informally, the P vs. NP question asks whether every optimization problem whose answers can be efficiently verified for correctness/optimality can be solved optimally with an efficient algorithm. Given the abundance of such problems in everyday life, a positive answer to the P vs. NP question would likely have profound practical and philosophical consequences. Cook conjectures that there are problems which cannot be solved by efficient algorithms. Yet, the conjecture remains open and is among the seven famous Millennium Prize Problems, in 1982, Cook received the Turing award for his contributions to complexity theory. His citation reads, For his advancement of our understanding of the complexity of computation in a significant and his seminal paper, The Complexity of Theorem Proving Procedures, presented at the 1971 ACM SIGACT Symposium on the Theory of Computing, laid the foundations for the theory of NP-Completeness. The ensuing exploration of the boundaries and nature of NP-complete class of problems has been one of the most active and he made another major contribution to the field in his 1979 paper, joint with his student Robert A. They proved that the existence of a system in which every true formula has a short proof is equivalent to NP = coNP. Cook co-authored a book with his student Phuong The Nguyen in this area titled Logical Foundations of Proof Complexity and his main research areas are complexity theory and proof complexity, with excursions into programming language semantics, parallel computation, and artificial intelligence. He named the complexity class NC after Nick Pippenger, the complexity class SC is named after him. The definition of the complexity class AC0 and its hierarchy AC are also introduced by him, according to Don Knuth the KMP algorithm was inspired by Cooks automata for recognizing concatenated palindromes in linear time. Cook was awarded a Steacie Fellowship in 1977, a Killam Research Fellowship in 1982 and he has won John L. Synge Award and Bernard Bolzano Medal, and is a fellow of the Royal Society of London and Royal Society of Canada. Cook was elected to membership in the National Academy of Sciences, Cook won the ACM Turing Award in 1982. Association for Computing Machinery honored him as a Fellow of ACM in 2008 for his contributions to the theory of computational complexity. The Government of Ontario appointed him to the Order of Ontario in 2013 and he has won the 2012 Gerhard Herzberg Canada Gold Medal for Science and Engineering, the highest honor for scientist and engineers in Canada

3.
Complexity class
–
In computational complexity theory, a complexity class is a set of problems of related resource-based complexity. A typical complexity class has a definition of the form, the set of problems that can be solved by an abstract machine M using O of resource R, Complexity classes are concerned with the rate of growth of the requirement in resources as the input n increases. It is a measurement, and does not give time or space in requirements in terms of seconds or bytes. The O is read as order of, for the purposes of computational complexity theory, some of the details of the function can be ignored, for instance many possible polynomials can be grouped together as a class. The resource in question can either be time, essentially the number of operations on an abstract machine. The simplest complexity classes are defined by the factors, The type of computational problem. However, complexity classes can be defined based on problems, counting problems, optimization problems, promise problems. The resource that are being bounded and the bounds, These two properties are usually stated together, such as time, logarithmic space, constant depth. Many complexity classes can be characterized in terms of the logic needed to express them. Bounding the computation time above by some function f often yields complexity classes that depend on the chosen machine model. For instance, the language can be solved in time on a multi-tape Turing machine. If we allow polynomial variations in running time, Cobham-Edmonds thesis states that the complexities in any two reasonable and general models of computation are polynomially related. This forms the basis for the complexity class P, which is the set of problems solvable by a deterministic Turing machine within polynomial time. The corresponding set of problems is FP. The Blum axioms can be used to define complexity classes without referring to a computational model. Many important complexity classes can be defined by bounding the time or space used by the algorithm, some important complexity classes of decision problems defined in this manner are the following, It turns out that PSPACE = NPSPACE and EXPSPACE = NEXPSPACE by Savitchs theorem. #P is an important complexity class of counting problems, classes like IP and AM are defined using Interactive proof systems. ALL is the class of all decision problems, many complexity classes are defined using the concept of a reduction

4.
Turing machine
–
Despite the models simplicity, given any computer algorithm, a Turing machine can be constructed that is capable of simulating that algorithms logic. The machine operates on an infinite memory tape divided into discrete cells, the machine positions its head over a cell and reads the symbol there. The Turing machine was invented in 1936 by Alan Turing, who called it an a-machine, thus, Turing machines prove fundamental limitations on the power of mechanical computation. Turing completeness is the ability for a system of instructions to simulate a Turing machine, a Turing machine is a general example of a CPU that controls all data manipulation done by a computer, with the canonical machine using sequential memory to store data. More specifically, it is a capable of enumerating some arbitrary subset of valid strings of an alphabet. Assuming a black box, the Turing machine cannot know whether it will eventually enumerate any one specific string of the subset with a given program and this is due to the fact that the halting problem is unsolvable, which has major implications for the theoretical limits of computing. The Turing machine is capable of processing an unrestricted grammar, which implies that it is capable of robustly evaluating first-order logic in an infinite number of ways. This is famously demonstrated through lambda calculus, a Turing machine that is able to simulate any other Turing machine is called a universal Turing machine. The thesis states that Turing machines indeed capture the notion of effective methods in logic and mathematics. Studying their abstract properties yields many insights into computer science and complexity theory, at any moment there is one symbol in the machine, it is called the scanned symbol. The machine can alter the scanned symbol, and its behavior is in part determined by that symbol, however, the tape can be moved back and forth through the machine, this being one of the elementary operations of the machine. Any symbol on the tape may therefore eventually have an innings, the Turing machine mathematically models a machine that mechanically operates on a tape. On this tape are symbols, which the machine can read and write, one at a time, in the original article, Turing imagines not a mechanism, but a person whom he calls the computer, who executes these deterministic mechanical rules slavishly. If δ is not defined on the current state and the current tape symbol, Q0 ∈ Q is the initial state F ⊆ Q is the set of final or accepting states. The initial tape contents is said to be accepted by M if it eventually halts in a state from F, Anything that operates according to these specifications is a Turing machine. The 7-tuple for the 3-state busy beaver looks like this, Q = Γ = b =0 Σ = q 0 = A F = δ = see state-table below Initially all tape cells are marked with 0. In the words of van Emde Boas, p.6, The set-theoretical object provides only partial information on how the machine will behave and what its computations will look like. For instance, There will need to be many decisions on what the symbols actually look like, and a failproof way of reading and writing symbols indefinitely

5.
Big O notation
–
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. It is a member of a family of notations invented by Paul Bachmann, Edmund Landau, in computer science, big O notation is used to classify algorithms according to how their running time or space requirements grow as the input size grows. Big O notation characterizes functions according to their rates, different functions with the same growth rate may be represented using the same O notation. The letter O is used because the rate of a function is also referred to as order of the function. A description of a function in terms of big O notation usually only provides a bound on the growth rate of the function. Associated with big O notation are several related notations, using the symbols o, Ω, ω, Big O notation is also used in many other fields to provide similar estimates. Let f and g be two functions defined on some subset of the real numbers. That is, f = O if and only if there exists a real number M. In many contexts, the assumption that we are interested in the rate as the variable x goes to infinity is left unstated. If f is a product of several factors, any constants can be omitted, for example, let f = 6x4 − 2x3 +5, and suppose we wish to simplify this function, using O notation, to describe its growth rate as x approaches infinity. This function is the sum of three terms, 6x4, −2x3, and 5, of these three terms, the one with the highest growth rate is the one with the largest exponent as a function of x, namely 6x4. Now one may apply the rule, 6x4 is a product of 6. Omitting this factor results in the simplified form x4, thus, we say that f is a big-oh of. Mathematically, we can write f = O, one may confirm this calculation using the formal definition, let f = 6x4 − 2x3 +5 and g = x4. Applying the formal definition from above, the statement that f = O is equivalent to its expansion, | f | ≤ M | x 4 | for some choice of x0 and M. To prove this, let x0 =1 and M =13, Big O notation has two main areas of application. In mathematics, it is used to describe how closely a finite series approximates a given function. In computer science, it is useful in the analysis of algorithms, in both applications, the function g appearing within the O is typically chosen to be as simple as possible, omitting constant factors and lower order terms

6.
Randomized algorithm
–
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic. The algorithm typically uses uniformly random bits as an input to guide its behavior. Formally, the performance will be a random variable determined by the random bits, thus either the running time. In the second case, random performance and random output, the algorithm for a procedure is somewhat questionable. In the case of output, it is no longer formally effective. However, in cases, probabilistic algorithms are the only practical means of solving a problem. As a motivating example, consider the problem of finding an ‘a’ in an array of n elements, input, An array of n≥2 elements, in which half are ‘a’s and the other half are ‘b’s. Output, Find an ‘a’ in the array and we give two versions of the algorithm, one Las Vegas algorithm and one Monte Carlo algorithm. Las Vegas algorithm, This algorithm succeeds with probability 1, after k iterations, the probability of finding an ‘a’ is, This algorithm does not guarantee success, but the run time is bounded. The number of iterations is less than or equal to k. Taking k to be constant the run time is Θ, Randomized algorithms are particularly useful when faced with a malicious adversary or attacker who deliberately tries to feed a bad input to the algorithm such as in the Prisoners dilemma. It is for this reason that randomness is ubiquitous in cryptography, in cryptographic applications, pseudo-random numbers cannot be used, since the adversary can predict them, making the algorithm effectively deterministic. Therefore, either a source of random numbers or a cryptographically secure pseudo-random number generator is required. Another area in which randomness is inherent is quantum computing, in the example above, the Las Vegas algorithm always outputs the correct answer, but its running time is a random variable. The Monte Carlo algorithm is guaranteed to complete in an amount of time that can be bounded by a function the size and its parameter k. Observe that any Las Vegas algorithm can be converted into a Monte Carlo algorithm, by having it output an arbitrary, Computational complexity theory models randomized algorithms as probabilistic Turing machines. Both Las Vegas and Monte Carlo algorithms are considered, and several complexity classes are studied, the complement class for RP is co-RP. Problem classes having algorithms with polynomial time average case running time whose output is always correct are said to be in ZPP, the class of problems for which both YES and NO-instances are allowed to be identified with some error is called BPP

7.
Complexity Zoo
–
Scott Joel Aaronson is a theoretical computer scientist. His primary area of research is quantum computing and computational complexity theory more generally, Aaronson grew up in the United States, though he spent a year in Asia when his father—a science writer turned public-relations executive—was posted to Hong Kong. He enrolled in a program for gifted youngsters run by Clarkson University, Aaronson had shown ability in mathematics from an early age, teaching himself calculus at the age of 11, provoked by symbols in a babysitters textbook. He discovered computer programming at age 11, and felt he lagged behind peers, partly for this reason, he felt drawn to theoretical computing, particularly computational complexity. At Cornell, he interested in quantum computing, and devoted himself to computational complexity. After postdoctorates at the Institute for Advanced Study and the University of Waterloo and his primary area of research is quantum computing and computational complexity theory more generally. In the summer of 2016 he moved from MIT to the University of Texas at Austin as David J. Bruton Jr, centennial Professor of Computer Science and as the founding director of UT Austins new quantum computing center. Aaronson is one of two winners of the 2012 Alan T. Waterman Award, best Paper Award of CSR2011 for the paper The Equivalence of Sampling and Searching. He is a founder of the Complexity Zoo wiki, which all classes of computational complexity. He is the author of the much-read blog Shtetl-Optimized as well as the essay Who Can Name The Bigger Number and it weaves together seemingly disparate topics into a cohesive whole, including quantum mechanics, complexity, free will, time travel, the anthropic principle and many others. Many of these applications of computational complexity were later fleshed out in his article Why Philosophers Should Care About Computational Complexity. An article of Aaronsons, The Limits of Quantum Computers, was published in Scientific American, Aaronson is frequently cited in non-academic press, such as Science News, The Age, ZDNet, Slashdot, New Scientist, The New York Times, and Forbes magazine. Aaronson was the subject of attention in October 2007, when he accused Love Communications of plagiarizing a lecture he wrote on quantum mechanics in an advertisement of theirs. He alleged that a commercial for Ricoh Australia by Sydney-based agency Love Communications appropriated content almost verbatim from the lecture, Aaronson received an email from the agency claiming to have sought legal advice and saying they did not believe that they were in violation of his copyright. Unsatisfied, Aaronson pursued the matter, and the agency settled the dispute without admitting wrongdoing by making a contribution to two science organizations of his choice. Concerning this matter, Aaronson stated, Someone suggested a cameo with the models, scott Aaronson at the Mathematics Genealogy Project Aaronsons blog Aaronson homepage

8.
Theoretical computer science
–
It is not easy to circumscribe the theoretical areas precisely. Work in this field is often distinguished by its emphasis on mathematical technique, despite this broad scope, the theory people in computer science self-identify as different from the applied people. Some characterize themselves as doing the science underlying the field of computing, other theory-applied people suggest that it is impossible to separate theory and application. This means that the theory people regularly use experimental science done in less-theoretical areas such as software system research. It also means there is more cooperation than mutually exclusive competition between theory and application. These developments have led to the study of logic and computability. Information theory was added to the field with a 1948 mathematical theory of communication by Claude Shannon, in the same decade, Donald Hebb introduced a mathematical model of learning in the brain. With mounting biological data supporting this hypothesis with some modification, the fields of neural networks, in 1971, Stephen Cook and, working independently, Leonid Levin, proved that there exist practically relevant problems that are NP-complete – a landmark result in computational complexity theory. With the development of mechanics in the beginning of the 20th century came the concept that mathematical operations could be performed on an entire particle wavefunction. In other words, one could compute functions on multiple states simultaneously, modern theoretical computer science research is based on these basic developments, but includes many other mathematical and interdisciplinary problems that have been posed. An algorithm is a procedure for calculations. Algorithms are used for calculation, data processing, and automated reasoning, an algorithm is an effective method expressed as a finite list of well-defined instructions for calculating a function. The transition from one state to the next is not necessarily deterministic, some algorithms, known as randomized algorithms, a data structure is a particular way of organizing data in a computer so that it can be used efficiently. Different kinds of structures are suited to different kinds of applications. For example, databases use B-tree indexes for small percentages of data retrieval and compilers, data structures provide a means to manage large amounts of data efficiently for uses such as large databases and internet indexing services. Usually, efficient data structures are key to designing efficient algorithms, some formal design methods and programming languages emphasize data structures, rather than algorithms, as the key organizing factor in software design. Storing and retrieving can be carried out on data stored in main memory and in secondary memory. A problem is regarded as inherently difficult if its solution requires significant resources, the theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage

9.
AC0
–
AC0 is a complexity class used in circuit complexity. It is the smallest class in the AC hierarchy, and consists of all families of circuits of depth O and polynomial size, with unlimited-fanin AND gates and it thus contains NC0, which has only bounded-fanin AND and OR gates. Integer addition and subtraction are computable in AC0, but multiplication is not, in 1984 Furst, Saxe, and Sipser showed that calculating the parity of an input cannot be decided by any AC0 circuits, even with non-uniformity. It follows that AC0 is not equal to NC1, because a family of circuits in the class can compute parity. More precise bounds follow from switching lemma, using them, it has been shown that there is an oracle separation between the polynomial hierarchy and PSPACE

10.
ACC0
–
ACC0, sometimes called ACC, is a class of computational models and problems defined in circuit complexity, a field of theoretical computer science. The class is defined by augmenting the class AC0 of constant-depth alternating circuits with the ability to count, specifically, a problem belongs to ACC0 if it can be solved by polynomial-size, constant-depth circuits of unbounded fan-in gates, including gates that count modulo a fixed integer. ACC0 corresponds to computation in any solvable monoid, more formally, a language belongs to AC0 if it can be computed by a family of circuits C1, C2. A language belongs to ACC0 if it belongs to AC0 for some m, in some texts, ACCi refers to a hierarchy of circuit classes with ACC0 at its lowest level, where the circuits in ACCi have depth O and polynomial size. The class ACC0 can also be defined in terms of computations of nonuniform deterministic finite automata over monoids. In this framework, the input is interpreted as elements from a fixed monoid, the class ACC0 is the family of languages accepted by a NUDFA over some monoid that does not contain an unsolvable group as a subsemigroup. This inclusion is strict, because a single MOD-2 gate computes the parity function, more generally, the function MODm can not be computed in AC0 for prime p unless m is a power of p. The class ACC0 is included in TC0 and it is conjectured that ACC0 is unable to compute the majority function of its inputs, but this remains unresolved as of July 2014. Every problem in ACC0 can be solved by circuits of depth 2, with AND gates of polylogarithmic fan-in at the inputs, the proof follows ideas of the proof of Todas theorem. Williams proves that ACC0 does not contain NEXPTIME, the proof uses many results in complexity theory, including the time hierarchy theorem, IP = PSPACE, derandomization, and the representation of ACC0 via SYM+ circuits. It is known that computing the permanent is impossible for logtime-uniform ACC0 circuits, which implies that the complexity class PP is not contained in logtime-uniform ACC0

11.
CC (complexity)
–
In computational complexity theory, CC is the complexity class containing decision problems which can be solved by comparator circuits of polynomial size. The most important problem which is complete for CC is a variant of the stable marriage problem. A comparator circuit is a network of wires and gates, each comparator gate, which is a directed edge connecting two wires, takes its two inputs and outputs them in sorted order. The input to any wire can be either a variable, its negation, one of the wires is designated as the output wire. The comparator circuit value problem is the problem of evaluating a comparator circuit given an encoding of the circuit, the complexity class CC is defined as the class of problems logspace reducible to CCVP. An equivalent definition is the class of problems AC0 reducible to CCVP, since there are sorting networks which can be constructed in AC0, this shows that the majority function is in CC. A problem in CC is CC-complete if every problem in CC can be reduced to it using a logspace reduction, the comparator circuit value problem is CC-complete. In the stable marriage problem, there is a number of men and women. Each person ranks all members of the opposite sex, a matching between men and women is stable if there are no unpaired man and woman who prefer each other over their current partners. Among the stable matchings, there is one in each woman gets the best man that she ever gets in any stable matching. The decision version of the matching problem is, given the rankings of all men and women, whether a given man. Although the classical Gale–Shapley algorithm cannot be implemented as a comparator circuit, another problem which is CC-complete is lexicographically-first maximal matching. In this problem, we are given a graph with an order on the vertices. The lexicographically-first maximal matching is obtained by successively matching vertices from the first bipartition to the minimal available vertices from the second bipartition, the problem asks whether the given edge belongs to this matching. Scott Aaronson showed that the model is CC-complete. The problem is to decide whether any pebbles are present in a particular pile after executing the program and he used this to show that the problem of deciding whether any balls reach a designated sink vertex in a Digi-Comp II-like device is also CC-complete. The comparator circuit evaluation problem can be solved in polynomial time, on the other hand, comparator circuits can solve directed reachability, and so CC contains NL. There is a world in which CC and NC are incomparable

12.
BPP (complexity)
–
BPP is one of the largest practical classes of problems, meaning most problems of interest in BPP have efficient probabilistic algorithms that can be run quickly on real modern machines. BPP also contains P, the class of problems solvable in time with a deterministic machine. Alternatively, BPP can be defined using only deterministic Turing machines, for some applications this definition is preferable since it does not mention probabilistic Turing machines. In practice, a probability of 1⁄3 might not be acceptable, however. It can be any constant between 0 and 1⁄2 and the set BPP will be unchanged and this makes it possible to create a highly accurate algorithm by merely running the algorithm several times and taking a majority vote of the answers. For example, if one defined the class with the restriction that the algorithm can be wrong with probability at most 1⁄2100, besides the problems in P, which are obviously in BPP, many problems were known to be in BPP but not known to be in P. The number of problems is decreasing, and it is conjectured that P = BPP. For a long time, one of the most famous problems that was known to be in BPP, in other words, is there an assignment of values to the variables such that when a nonzero polynomial is evaluated on these values, the result is nonzero. It suffices to choose each variables value uniformly at random from a subset of at least d values to achieve bounded error probability. If the access to randomness is removed from the definition of BPP, in the definition of the class, if we replace the ordinary Turing machine with a quantum computer, we get the class BQP. Adding postselection to BPP, or allowing computation paths to have different lengths, BPPpath is known to contain NP, and it is contained in its quantum counterpart PostBQP. A Monte Carlo algorithm is an algorithm which is likely to be correct. Problems in the class BPP have Monte Carlo algorithms with polynomial bounded running time and this is compared to a Las Vegas algorithm which is a randomized algorithm which either outputs the correct answer, or outputs fail with low probability. Las Vegas algorithms with polynomial bound running times are used to define the class ZPP, alternatively, ZPP contains probabilistic algorithms that are always correct and have expected polynomial running time. This is weaker than saying it is a polynomial time algorithm, since it may run for super-polynomial time and it is known that BPP is closed under complement, that is, BPP = co-BPP. BPP is low for itself, meaning that a BPP machine with the power to solve BPP problems instantly is not any more powerful than the machine without this extra power. The relationship between BPP and NP is unknown, it is not known whether BPP is a subset of NP, NP is a subset of BPP or neither. If NP is contained in BPP, which is considered unlikely since it would imply practical solutions for NP-complete problems, then NP = RP and it is known that RP is a subset of BPP, and BPP is a subset of PP

13.
BQP
–
In computational complexity theory, BQP is the class of decision problems solvable by a quantum computer in polynomial time, with an error probability of at most 1/3 for all instances. It is the analogue of the complexity class BPP. In other words, there is an algorithm for a computer that solves the decision problem with high probability and is guaranteed to run in polynomial time. On any given run of the algorithm, it has a probability of at most 1/3 that it give the wrong answer. Similarly to other bounded error probabilistic classes the choice of 1/3 in the definition is arbitrary and we can run the algorithm a constant number of times and take a majority vote to achieve any desired probability of correctness less than 1, using the Chernoff bound. BQP can also be viewed as the associated with certain bounded-error uniform families of quantum circuits. For example, algorithms are known for factoring an n-bit integer using just over 2n qubits, usually, computation on a quantum computer ends with a measurement. This leads to a collapse of state to one of the basis states. It can be said that the state is measured to be in the correct state with high probability. Quantum computers have gained widespread interest because some problems of practical interest are known to be in BQP, just like P and BPP, BQP is low for itself, which means BQPBQP = BQP. Informally, this is true because polynomial time algorithms are closed under composition, if a polynomial time algorithm calls as a subroutine polynomially many polynomial time algorithms, the resulting algorithm is still polynomial time. BQP contains P and BPP and is contained in AWPP, PP, the relation between BQP and NP is not known. Adding postselection to BQP results in the complexity class PostBQP which is equal to PP

14.
NP (complexity)
–
In computational complexity theory, NP is a complexity class used to describe certain types of decision problems. Informally, NP is the set of all decision problems for which the instances where the answer is yes have efficiently verifiable proofs, more precisely, these proofs have to be verifiable by deterministic computations that can be performed in polynomial time. Equivalently, the definition of NP is the set of decision problems solvable in polynomial time by a theoretical non-deterministic Turing machine. This second definition is the basis for the abbreviation NP, which stands for nondeterministic, however, the verifier-based definition tends to be more intuitive and practical in common applications compared to the formal machine definition. A method for solving a problem is given in the form of an algorithm. In the above definitions for NP, polynomial time refers to the number of machine operations needed by an algorithm relative to the size of the problem. Polynomial time is therefore a measure of efficiency of an algorithm, decision problems are commonly categorized into complexity classes based on the fastest known machine algorithms. As such, decision problems may change if a faster algorithm is discovered. The most important open question in complexity theory, the P versus NP problem, asks whether polynomial time algorithms actually exist for solving NP-complete and it is widely believed that this is not the case. The complexity class NP is also related to the complexity class co-NP, whether or not NP = co-NP is another outstanding question in complexity theory. The complexity class NP can be defined in terms of NTIME as follows, alternatively, NP can be defined using deterministic Turing machines as verifiers. In particular, the versions of many interesting search problems. In this example, the answer is yes, since the subset of integers corresponds to the sum + +5 =0, the task of deciding whether such a subset with sum zero exists is called the subset sum problem. To answer if some of the integers add to zero we can create an algorithm which obtains all the possible subsets, as the number of integers that we feed into the algorithm becomes larger, the number of subsets grows exponentially and so does the computation time. However, notice that, if we are given a subset, we can easily check or verify whether the subset sum is zero. So if the sum is indeed zero, that particular subset is the proof or witness for the fact that the answer is yes, an algorithm that verifies whether a given subset has sum zero is called verifier. More generally, a problem is said to be in NP if there exists a verifier V for the problem. Given any instance I of problem P, where the answer is yes, there must exist a certificate W such that, given the ordered pair as input, furthermore, if the answer to I is no, the verifier will return no with input for all possible W

15.
NP-completeness
–
In computational complexity theory, a decision problem is NP-complete when it is both in NP and NP-hard. The set of NP-complete problems is often denoted by NP-C or NPC, the abbreviation NP refers to nondeterministic polynomial time. That is, the required to solve the problem using any currently known algorithm increases very quickly as the size of the problem grows. As a consequence, determining whether or not it is possible to solve problems quickly. NP-complete problems are addressed by using heuristic methods and approximation algorithms. A problem p in NP is NP-complete if every problem in NP can be transformed into p in polynomial time. NP-complete problems are studied because the ability to quickly verify solutions to a problem seems to correlate with the ability to solve that problem. It is not known whether every problem in NP can be quickly solved—this is called the P versus NP problem, because of this, it is often said that NP-complete problems are harder or more difficult than NP problems in general. A decision problem C is NP-complete if, C is in NP, C can be shown to be in NP by demonstrating that a candidate solution to C can be verified in polynomial time. Note that a problem satisfying condition 2 is said to be NP-hard, a consequence of this definition is that if we had a polynomial time algorithm for C, we could solve all problems in NP in polynomial time. The concept of NP-completeness was introduced in 1971, though the term NP-complete was introduced later, at 1971 STOC conference, there was a fierce debate among the computer scientists about whether NP-complete problems could be solved in polynomial time on a deterministic Turing machine. This is known as the question of whether P=NP, nobody has yet been able to determine conclusively whether NP-complete problems are in fact solvable in polynomial time, making this one of the great unsolved problems of mathematics. The Clay Mathematics Institute is offering a US $1 million reward to anyone who has a proof that P=NP or that P≠NP. Cook–Levin theorem states that the Boolean satisfiability problem is NP-complete, in 1972, Richard Karp proved that several other problems were also NP-complete, thus there is a class of NP-complete problems. For more details refer to Introduction to the Design and Analysis of Algorithms by Anany Levitin, an interesting example is the graph isomorphism problem, the graph theory problem of determining whether a graph isomorphism exists between two graphs. Two graphs are isomorphic if one can be transformed into the other simply by renaming vertices, consider these two problems, Graph Isomorphism, Is graph G1 isomorphic to graph G2. Subgraph Isomorphism, Is graph G1 isomorphic to a subgraph of graph G2, the Subgraph Isomorphism problem is NP-complete. The graph isomorphism problem is suspected to be neither in P nor NP-complete and this is an example of a problem that is thought to be hard, but is not thought to be NP-complete

16.
NP-hardness
–
NP-hardness, in computational complexity theory, is the defining property of a class of problems that are, informally, at least as hard as the hardest problems in NP. As a consequence, finding an algorithm to solve any NP-hard problem would give polynomial algorithms for all the problems in NP. A common misconception is that the NP in NP-hard stands for non-polynomial when in fact it stands for Non-deterministic Polynomial acceptable problems, although it is suspected that there are no polynomial-time algorithms for NP-hard problems, this has never been proven. Moreover, the class P in which all problems can be solved in time, is contained in the NP class. Informally, we can think of an algorithm that can call such a machine as a subroutine for solving H. Another definition is to require that there is a reduction from an NP-complete problem G to H. As any problem L in NP reduces in polynomial time to G, L reduces in turn to H in polynomial time so this new definition implies the previous one. Awkwardly, it does not restrict the class NP-hard to decision problems, for instance it also includes search problems, If P ≠ NP, then NP-hard problems cannot be solved in polynomial time. Note that some NP-hard optimization problems can be polynomial-time approximated up to some constant approximation ratio or even up to any approximation ratio. An example of an NP-hard problem is the subset sum problem. That is a problem, and happens to be NP-complete. Another example of an NP-hard problem is the problem of finding the least-cost cyclic route through all nodes of a weighted graph. This is commonly known as the traveling salesman problem, there are decision problems that are NP-hard but not NP-complete, for example the halting problem. This is the problem which asks given a program and its input and that is a yes/no question, so this is a decision problem. It is easy to prove that the problem is NP-hard. It is also easy to see that the problem is not in NP since all problems in NP are decidable in a finite number of operations, while the halting problem. There are also NP-hard problems that are neither NP-complete nor undecidable, for instance, the language of True quantified Boolean formulas is decidable in polynomial space, but not non-deterministic polynomial time. NP-hard problems do not have to be elements of the complexity class NP, NP-hard Class of decision problems which are at least as hard as the hardest problems in NP

17.
QMA
–
In computational complexity theory, QMA, which stands for Quantum Merlin Arthur, is the quantum analog of the nonprobabilistic complexity class NP or the probabilistic complexity class MA. It is related to BQP in the same way NP is related to P, moreover, when the answer is NO, every polynomial-size quantum state is rejected by the verifier with high probability. As is usually the case, the constants 2/3 and 1/3 can be changed, changing 2/3 to any constant strictly between 1/2 and 1, or changing 1/3 to any constant strictly between 0 and 1/2, does not change the class QMA. ∀ x ∉ L, for all quantum states | ψ ⟩, the complexity class QMA is defined to be equal to QMA. However, the constants are not too important since the class remains unchanged if c and s are set to any constants such that c is greater than s, moreover, for any polynomials q and r, we have QMA = QMA = QMA. Since many interesting classes are contained in QMA, such as P, BQP and NP, however, there are problems that are in QMA but not known to be in NP or BQP. Some such well known problems are discussed below, a problem is said to be QMA-hard, analogous to NP-hard, if every problem in QMA can be reduced to it. A problem is said to be QMA-complete if it is QMA-hard, the local Hamiltonian problem is the quantum analogue of MAX-SAT. A Hamiltonian is a Hermitian matrix acting on states, thus it is 2 n ×2 n for a system of n qubits. A k-local Hamiltonian is a Hamiltonian which can be written as the sum of Hamiltonians, the k-local Hamiltonian problem, which is a promise problem, is defined as follows. The input is a k-local Hamiltonian acting on n qubits, which is the sum of polynomially many Hermitian matrices that act on only k qubits, the input also contains two numbers a < b ∈, such that 1 b − a = O for some constant c. The problem is to determine whether the smallest eigenvalue of this Hamiltonian is less than a or greater than b, the k-local Hamiltonian is QMA-complete for k ≥2. Such models are applicable to universal adiabatic quantum computation, the Hamiltonians for the QMA-complete problem can also be restricted to act on a two dimensional grid of qubits or a line of quantum particles with 12 states per particle. A list of known QMA-complete problems can be found at http, QCMA, which stands for Quantum Classical Merlin Arthur, is similar to QMA, but the proof has to be a classical string. It is not known whether QMA equals QCMA, although QCMA is clearly contained in QMA, QIP, which stands for Quantum Interactive Polynomial time, is a generalization of QMA where Merlin and Arthur can interact for k rounds. QIP is known to be in PSPACE, QIP is QIP where k is allowed to be polynomial in the number of qubits. It is known that QIP = QIP and it is also known that QIP = IP = PSPACE. The next two inclusions follow from the fact that the verifier is being more powerful in each case

18.
IP (complexity)
–
In computational complexity theory, the class IP is the class of problems solvable by an interactive proof system. The concept of a proof system was first introduced by Shafi Goldwasser, Silvio Micali. These two machines exchange a number, p, of messages and once the interaction is completed. At most two additional rounds of interaction are required to replicate the effect of a private-coin protocol, the opposite inclusion is straightforward, because the verifier can always send to the prover the results of their private coin tosses, which proves that the two types of protocols are equivalent. The proof can be divided in two parts, we show that IP ⊆ PSPACE and PSPACE ⊆ IP, in order to demonstrate that IP ⊆ PSPACE, we present a simulation of an interactive proof system by a polynomial space machine. This expression is the average of NMj+1, weighted by the probability that the verifier sent message mj+1, take M0 to be the empty message sequence, here we will show that NM0 can be computed in polynomial space, and that NM0 = Pr. First, to compute NM0, an algorithm can calculate the values NMj for every j. Since the depth of the recursion is p, only polynomial space is necessary, the second requirement is that we need NM0 = Pr, the value needed to determine whether w is in A. We use induction to prove this as follows and we must show that for every 0 ≤ j ≤ p and every Mj, NMj = Pr, and we will do this using induction on j. The base case is to prove for j = p, then we will use induction to go from p down to 0. The base case of j = p is fairly simple, since mp is either accept or reject, if mp is accept, NMp is defined to be 1 and Pr =1 since the message stream indicates acceptance, thus the claim is true. If mp is reject, the argument is very similar, for the inductive hypothesis, we assume that for some j+1 ≤ p and any message sequence Mj+1, NMj = Pr and then prove the hypothesis for j and any message sequence Mj. If j is even, mj+1 is a message from V to P, by the definition of NMj, N M j = ∑ m j +1 Pr r N M j +1. Then, by the hypothesis, we can say this is equal to ∑ m j +1 Pr r ∗ Pr. Finally, by definition, we can see that this is equal to Pr, If j is odd, mj+1 is a message from P to V. By definition, N M j = max m j +1 N M j +1, then, by the inductive hypothesis, this equals max m j +1 ∗ Pr. This is equal to Pr since, max m j +1 Pr ≤ Pr because the prover on the side could send the message mj+1 to maximize the expression on the left-hand side. And, max m j +1 Pr ≥ Pr Since the same Prover cannot do any better than send that same message, thus, this holds whether i is even or odd and the proof that IP ⊆ PSPACE is complete

19.
PSPACE
–
In computational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space. PSPACE is a superset of the set of context-sensitive languages. It turns out that allowing the Turing machine to be nondeterministic does not add any extra power, because of Savitchs theorem, NPSPACE is equivalent to PSPACE, essentially because a deterministic Turing machine can simulate a non-deterministic Turing machine without needing much more space. Also, the complements of all problems in PSPACE are also in PSPACE and it is widely suspected that all are strict. The containments in the line are both known to be strict. The first follows from direct diagonalization and the fact that PSPACE = NPSPACE via Savitchs theorem, the second follows simply from the space hierarchy theorem. The hardest problems in PSPACE are the PSPACE-Complete problems, see PSPACE-Complete for examples of problems that are suspected to be in PSPACE but not in NP. The class PSPACE is closed under union, complementation. An alternative characterization of PSPACE is the set of problems decidable by an alternating Turing machine in polynomial time, a logical characterization of PSPACE from descriptive complexity theory is that it is the set of problems expressible in second-order logic with the addition of a transitive closure operator. A full transitive closure is not needed, a transitive closure. It is the addition of this operator that distinguishes PSPACE from PH, a major result of complexity theory is that PSPACE can be characterized as all the languages recognizable by a particular interactive proof system, the one defining the class IP. In this system, there is an all-powerful prover trying to convince a randomized polynomial-time verifier that a string is in the language, PSPACE can be characterized as the quantum complexity class QIP. PSPACE is also equal to PCTC, problems solvable by classical computers using closed curves, as well as to BQPCTC. PSPACE-complete problems are of importance to studying PSPACE problems because they represent the most difficult problems in PSPACE. Finding a simple solution to a PSPACE-complete problem would mean we have a solution to all other problems in PSPACE because all PSPACE problems could be reduced to a PSPACE-complete problem. An example of a PSPACE-complete problem is the quantified Boolean formula problem, introduction to the Theory of Computation. Chapter 19, Polynomial space, pp. 455–490, introduction to the Theory of Computation. Chapter 8, Space Complexity Complexity Zoo, PSPACE