1.
Matthew J. Holman
–
Matthew J. Holman is a Smithsonian Astrophysicist and lecturer at Harvard University. Holman studied at MIT, where he received his bachelors degree in mathematics in 1989 and he was awarded the Newcomb Cleveland Prize in 1998. As of 25 January 2015, he holds the position of a director of IAUs Minor Planet Center, after former director Timothy B. He was a Salina Central High School classmate and fellow team member of Joe Miller. The main-belt asteroid 3666 Holman was named in his honour in 1999 and he was also part of a team that discovered numerous irregular moons, Discovered moons of Neptune, Halimede – in 2002 with J. J. Kavelaars, T. Grav, W. Fraser and D. Milisavljevic Sao – in 2002 with J. J, kavelaars, T. Grav, W. Fraser, D. Milisavljevic Laomedeia – in 2002, with J. J. Kavelaars, T. Grav, W. Fraser, D. Milisavljevic Neso – in 2002, Discovered moons of Uranus, Prospero – in 1999, with J. J. Petit, H. Scholl Setebos – in 1999, with J. J, petit, H. Scholl Stephano – in 1999, with B. Petit, H. Scholl Trinculo – in 2001, with J. J, kavelaars, D. Milisavljevic Francisco – in 2001, with J. J. Kavelaars, D. Milisavljevic, T. Grav Ferdinand – in 2001, with D. Milisavljevic, J. J

2.
John J. Kavelaars
–
J-John Kavelaars, better known as JJ Kavelaars, is a Canadian astronomer who was part of a team that discovered several moons of Jupiter, Saturn, Uranus, and Neptune. Dr. Kavelaars, born in 1966, is a graduate of the Glencoe District High School in Glencoe, Ontario, the University of Guelph and he is currently an astronomer at the Dominion Astrophysical Observatory in Victoria, B. C. In the course of his work, he has been responsible for the discovery of eleven satellites of Saturn, eight of Uranus, and four of Neptune, Dr. Dr. Kavelaars is the brother of Canadian actress Ingrid Kavelaars and Canadian fencing athlete Monique Kavelaars. The asteroid 154660 Kavelaars was named in his honour on 1 June 2007 by his colleague David D. Balam, astronomy – John J. Kavelaars, Notable GDHS Graduates Homepage at NRC

3.
Dan Milisavljevic
–
Dan Milisavljevic is a Canadian astronomer and postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics. Milisavljevic received his education at McMaster University, where he was enrolled in the prestigious McMaster Arts. Upon graduation in 2004, he was awarded the Commonwealth Scholarship to study at the London School of Economics, there he pursued an MSc in the Philosophy and History of Science, and completed a dissertation on the interpretation of quantum mechanics. In June 2011, Milisavljevic obtained a PhD in physics and astronomy from Dartmouth College, Milisavljevic specializes in observational work in supernovae and supernova remnants. He is also known for aiding in the discovery of Uranuss moons Ferdinand, Trinculo, and Francisco, personal Homepage of Dan Milisavljevic at Dartmouth College

4.
Orbit
–
In physics, an orbit is the gravitationally curved path of an object around a point in space, for example the orbit of a planet about a star or a natural satellite around a planet. Normally, orbit refers to a regularly repeating path around a body, to a close approximation, planets and satellites follow elliptical orbits, with the central mass being orbited at a focal point of the ellipse, as described by Keplers laws of planetary motion. For ease of calculation, in most situations orbital motion is adequately approximated by Newtonian Mechanics, historically, the apparent motions of the planets were described by European and Arabic philosophers using the idea of celestial spheres. This model posited the existence of perfect moving spheres or rings to which the stars and it assumed the heavens were fixed apart from the motion of the spheres, and was developed without any understanding of gravity. After the planets motions were accurately measured, theoretical mechanisms such as deferent. Originally geocentric it was modified by Copernicus to place the sun at the centre to help simplify the model, the model was further challenged during the 16th century, as comets were observed traversing the spheres. The basis for the understanding of orbits was first formulated by Johannes Kepler whose results are summarised in his three laws of planetary motion. Second, he found that the speed of each planet is not constant, as had previously been thought. Third, Kepler found a relationship between the orbital properties of all the planets orbiting the Sun. For the planets, the cubes of their distances from the Sun are proportional to the squares of their orbital periods. Jupiter and Venus, for example, are respectively about 5.2 and 0.723 AU distant from the Sun, their orbital periods respectively about 11.86 and 0.615 years. The proportionality is seen by the fact that the ratio for Jupiter,5. 23/11.862, is equal to that for Venus,0. 7233/0.6152. Idealised orbits meeting these rules are known as Kepler orbits, isaac Newton demonstrated that Keplers laws were derivable from his theory of gravitation and that, in general, the orbits of bodies subject to gravity were conic sections. Newton showed that, for a pair of bodies, the sizes are in inverse proportion to their masses. Where one body is more massive than the other, it is a convenient approximation to take the center of mass as coinciding with the center of the more massive body. Lagrange developed a new approach to Newtonian mechanics emphasizing energy more than force, in a dramatic vindication of classical mechanics, in 1846 le Verrier was able to predict the position of Neptune based on unexplained perturbations in the orbit of Uranus. This led astronomers to recognize that Newtonian mechanics did not provide the highest accuracy in understanding orbits, in relativity theory, orbits follow geodesic trajectories which are usually approximated very well by the Newtonian predictions but the differences are measurable. Essentially all the evidence that can distinguish between the theories agrees with relativity theory to within experimental measurement accuracy

5.
Semi-major and semi-minor axes
–
In geometry, the major axis of an ellipse is its longest diameter, a line segment that runs through the center and both foci, with ends at the widest points of the perimeter. The semi-major axis is one half of the axis, and thus runs from the centre, through a focus. Essentially, it is the radius of an orbit at the two most distant points. For the special case of a circle, the axis is the radius. One can think of the axis as an ellipses long radius. The semi-major axis of a hyperbola is, depending on the convention, thus it is the distance from the center to either vertex of the hyperbola. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction. Thus a and b tend to infinity, a faster than b, the semi-minor axis is a line segment associated with most conic sections that is at right angles with the semi-major axis and has one end at the center of the conic section. It is one of the axes of symmetry for the curve, in an ellipse, the one, in a hyperbola. The semi-major axis is the value of the maximum and minimum distances r max and r min of the ellipse from a focus — that is. In astronomy these extreme points are called apsis, the semi-minor axis of an ellipse is the geometric mean of these distances, b = r max r min. The eccentricity of an ellipse is defined as e =1 − b 2 a 2 so r min = a, r max = a. Now consider the equation in polar coordinates, with one focus at the origin, the mean value of r = ℓ / and r = ℓ /, for θ = π and θ =0 is a = ℓ1 − e 2. In an ellipse, the axis is the geometric mean of the distance from the center to either focus. The semi-minor axis of an ellipse runs from the center of the ellipse to the edge of the ellipse, the semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the axis that connects two points on the ellipses edge. The semi-minor axis b is related to the axis a through the eccentricity e. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction

6.
Orders of magnitude (length)
–
The following are examples of orders of magnitude for different lengths. To help compare different orders of magnitude, the following list describes various lengths between 1. 6×10−35 meters and 101010122 meters,100 pm –1 Ångström 120 pm – radius of a gold atom 150 pm – Length of a typical covalent bond. 280 pm – Average size of the water molecule 298 pm – radius of a caesium atom, light travels 1 metre in 1⁄299,792,458, or 3. 3356409519815E-9 of a second. 25 metres – wavelength of the broadcast radio shortwave band at 12 MHz 29 metres – height of the lighthouse at Savudrija, Slovenia. 31 metres – wavelength of the broadcast radio shortwave band at 9.7 MHz 34 metres – height of the Split Point Lighthouse in Aireys Inlet, Victoria, Australia. 1 kilometre is equal to,1,000 metres 0.621371 miles 1,093.61 yards 3,280.84 feet 39,370.1 inches 100,000 centimetres 1,000,000 millimetres Side of a square of area 1 km2. Radius of a circle of area π km2,1.637 km – deepest dive of Lake Baikal in Russia, the worlds largest fresh water lake. 2.228 km – height of Mount Kosciuszko, highest point in Australia Most of Manhattan is from 3 to 4 km wide, farsang, a modern unit of measure commonly used in Iran and Turkey. Usage of farsang before 1926 may be for a precise unit derived from parasang. It is the altitude at which the FAI defines spaceflight to begin, to help compare orders of magnitude, this page lists lengths between 100 and 1,000 kilometres. 7.9 Gm – Diameter of Gamma Orionis 9, the newly improved measurement was 30% lower than the previous 2007 estimate. The size was revised in 2012 through improved measurement techniques and its faintness gives us an idea how our Sun would appear when viewed from even so close a distance as this. 350 Pm –37 light years – Distance to Arcturus 373.1 Pm –39.44 light years - Distance to TRAPPIST-1, a star recently discovered to have 7 planets around it. 400 Pm –42 light years – Distance to Capella 620 Pm –65 light years – Distance to Aldebaran This list includes distances between 1 and 10 exametres. 13 Em –1,300 light years – Distance to the Orion Nebula 14 Em –1,500 light years – Approximate thickness of the plane of the Milky Way galaxy at the Suns location 30.8568 Em –3,261. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. 590 Ym –62 billion light years – Cosmological event horizon, displays orders of magnitude in successively larger rooms Powers of Ten Travel across the Universe

7.
Orbital eccentricity
–
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is an orbit, values between 0 and 1 form an elliptical orbit,1 is a parabolic escape orbit. The term derives its name from the parameters of conic sections and it is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit, the eccentricity of this Kepler orbit is a non-negative number that defines its shape. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola, radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits have zero angular momentum and hence eccentricity equal to one, keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity. From Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros out of the center, from ἐκ- ek-, eccentric first appeared in English in 1551, with the definition a circle in which the earth, sun. Five years later, in 1556, a form of the word was added. The eccentricity of an orbit can be calculated from the state vectors as the magnitude of the eccentricity vector, e = | e | where. For elliptical orbits it can also be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p =1 −2 r a r p +1 where, rp is the radius at periapsis. For Earths annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈1.034 relative to center point of path, the eccentricity of the Earths orbit is currently about 0.0167, the Earths orbit is nearly circular. Venus and Neptune have even lower eccentricity, over hundreds of thousands of years, the eccentricity of the Earths orbit varies from nearly 0.0034 to almost 0.058 as a result of gravitational attractions among the planets. The table lists the values for all planets and dwarf planets, Mercury has the greatest orbital eccentricity of any planet in the Solar System. Such eccentricity is sufficient for Mercury to receive twice as much solar irradiation at perihelion compared to aphelion, before its demotion from planet status in 2006, Pluto was considered to be the planet with the most eccentric orbit

8.
Orbital inclination
–
Orbital inclination measures the tilt of an objects orbit around a celestial body. It is expressed as the angle between a plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the equator, the plane of the orbit is the same as the Earths equatorial plane. The general case is that the orbit is tilted, it spends half an orbit over the northern hemisphere. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°, the inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planets equator, for planets in the Solar System, the plane of reference is usually the ecliptic, the plane in which the Earth orbits the Sun. This reference plane is most practical for Earth-based observers, therefore, Earths inclination is, by definition, zero. Inclination could instead be measured with respect to another plane, such as the Suns equator or the invariable plane, the inclination of orbits of natural or artificial satellites is measured relative to the equatorial plane of the body they orbit, if they orbit sufficiently closely. The equatorial plane is the perpendicular to the axis of rotation of the central body. An inclination of 30° could also be described using an angle of 150°, the convention is that the normal orbit is prograde, an orbit in the same direction as the planet rotates. Inclinations greater than 90° describe retrograde orbits, thus, An inclination of 0° means the orbiting body has a prograde orbit in the planets equatorial plane. An inclination greater than 0° and less than 90° also describe prograde orbits, an inclination of 63. 4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. An inclination of exactly 90° is an orbit, in which the spacecraft passes over the north and south poles of the planet. An inclination greater than 90° and less than 180° is a retrograde orbit, an inclination of exactly 180° is a retrograde equatorial orbit. For gas giants, the orbits of moons tend to be aligned with the giant planets equator, the inclination of exoplanets or members of multiple stars is the angle of the plane of the orbit relative to the plane perpendicular to the line-of-sight from Earth to the object. An inclination of 0° is an orbit, meaning the plane of its orbit is parallel to the sky. An inclination of 90° is an orbit, meaning the plane of its orbit is perpendicular to the sky