1.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
2.
Pentagon
–
In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting, a self-intersecting regular pentagon is called a pentagram. A regular pentagon has Schläfli symbol and interior angles are 108°, a regular pentagon has five lines of reflectional symmetry, and rotational symmetry of order 5. The diagonals of a regular pentagon are in the golden ratio to its sides. The area of a regular convex pentagon with side length t is given by A = t 225 +1054 =5 t 2 tan 4 ≈1.720 t 2. A pentagram or pentangle is a regular star pentagon and its sides form the diagonals of a regular convex pentagon – in this arrangement the sides of the two pentagons are in the golden ratio. The area of any polygon is, A =12 P r where P is the perimeter of the polygon. Substituting the regular pentagons values for P and r gives the formula A =12 ×5 t × t tan 2 =5 t 2 tan 4 with side length t, like every regular convex polygon, the regular convex pentagon has an inscribed circle. The apothem, which is the r of the inscribed circle. Like every regular polygon, the regular convex pentagon has a circumscribed circle. For a regular pentagon with successive vertices A, B, C, D, E, the regular pentagon is constructible with compass and straightedge, as 5 is a Fermat prime. A variety of methods are known for constructing a regular pentagon, one method to construct a regular pentagon in a given circle is described by Richmond and further discussed in Cromwells Polyhedra. The top panel shows the construction used in Richmonds method to create the side of the inscribed pentagon, the circle defining the pentagon has unit radius. Its center is located at point C and a midpoint M is marked halfway along its radius and this point is joined to the periphery vertically above the center at point D. Angle CMD is bisected, and the bisector intersects the axis at point Q. A horizontal line through Q intersects the circle at point P, to determine the length of this side, the two right triangles DCM and QCM are depicted below the circle. Using Pythagoras theorem and two sides, the hypotenuse of the triangle is found as 5 /2
3.
Johannes Kepler
–
Johannes Kepler was a German mathematician, astronomer, and astrologer. A key figure in the 17th-century scientific revolution, he is best known for his laws of motion, based on his works Astronomia nova, Harmonices Mundi. These works also provided one of the foundations for Isaac Newtons theory of universal gravitation, Kepler was a mathematics teacher at a seminary school in Graz, where he became an associate of Prince Hans Ulrich von Eggenberg. Later he became an assistant to the astronomer Tycho Brahe in Prague and he was also a mathematics teacher in Linz, and an adviser to General Wallenstein. Kepler lived in an era when there was no distinction between astronomy and astrology, but there was a strong division between astronomy and physics. Kepler was born on December 27, the feast day of St John the Evangelist,1571 and his grandfather, Sebald Kepler, had been Lord Mayor of the city. By the time Johannes was born, he had two brothers and one sister and the Kepler family fortune was in decline and his father, Heinrich Kepler, earned a precarious living as a mercenary, and he left the family when Johannes was five years old. He was believed to have died in the Eighty Years War in the Netherlands and his mother Katharina Guldenmann, an innkeepers daughter, was a healer and herbalist. Born prematurely, Johannes claimed to have weak and sickly as a child. Nevertheless, he often impressed travelers at his grandfathers inn with his phenomenal mathematical faculty and he was introduced to astronomy at an early age, and developed a love for it that would span his entire life. At age six, he observed the Great Comet of 1577, in 1580, at age nine, he observed another astronomical event, a lunar eclipse, recording that he remembered being called outdoors to see it and that the moon appeared quite red. However, childhood smallpox left him with vision and crippled hands. In 1589, after moving through grammar school, Latin school, there, he studied philosophy under Vitus Müller and theology under Jacob Heerbrand, who also taught Michael Maestlin while he was a student, until he became Chancellor at Tübingen in 1590. He proved himself to be a mathematician and earned a reputation as a skilful astrologer. Under the instruction of Michael Maestlin, Tübingens professor of mathematics from 1583 to 1631 and he became a Copernican at that time. In a student disputation, he defended heliocentrism from both a theoretical and theological perspective, maintaining that the Sun was the source of motive power in the universe. Despite his desire to become a minister, near the end of his studies, Kepler was recommended for a position as teacher of mathematics and he accepted the position in April 1594, at the age of 23. Keplers first major work, Mysterium Cosmographicum, was the first published defense of the Copernican system
4.
Golden ratio
–
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. The figure on the right illustrates the geometric relationship, expressed algebraically, for quantities a and b with a > b >0, a + b a = a b = def φ, where the Greek letter phi represents the golden ratio. Its value is, φ =1 +52 =1.6180339887 …, A001622 The golden ratio is also called the golden mean or golden section. Other names include extreme and mean ratio, medial section, divine proportion, divine section, golden proportion, golden cut, the golden ratio appears in some patterns in nature, including the spiral arrangement of leaves and other plant parts. The golden ratio has also used to analyze the proportions of natural objects as well as man-made systems such as financial markets. Two quantities a and b are said to be in the golden ratio φ if a + b a = a b = φ, one method for finding the value of φ is to start with the left fraction. Through simplifying the fraction and substituting in b/a = 1/φ, a + b a =1 + b a =1 +1 φ, multiplying by φ gives φ +1 = φ2 which can be rearranged to φ2 − φ −1 =0. First, the line segment A B ¯ is about doubled and then the semicircle with the radius A S ¯ around the point S is drawn, now the semicircle is drawn with the radius A B ¯ around the point B. The arising intersection point E corresponds 2 φ, next up, the perpendicular on the line segment A E ¯ from the point D will be establish. The subsequent parallel F S ¯ to the line segment C M ¯, produces, as it were and it is well recognizable, this triangle and the triangle M S C are similar to each other. The hypotenuse F S ¯ has due to the cathetuses S D ¯ =1 and D F ¯ =2 according the Pythagorean theorem, finally, the circle arc is drawn with the radius 5 around the point F. The golden ratio has been claimed to have held a fascination for at least 2,400 years. But the fascination with the Golden Ratio is not confined just to mathematicians, biologists, artists, musicians, historians, architects, psychologists, and even mystics have pondered and debated the basis of its ubiquity and appeal. In fact, it is fair to say that the Golden Ratio has inspired thinkers of all disciplines like no other number in the history of mathematics. Ancient Greek mathematicians first studied what we now call the golden ratio because of its frequent appearance in geometry, the division of a line into extreme and mean ratio is important in the geometry of regular pentagrams and pentagons. Euclid explains a construction for cutting a line in extreme and mean ratio, throughout the Elements, several propositions and their proofs employ the golden ratio. The golden ratio is explored in Luca Paciolis book De divina proportione, since the 20th century, the golden ratio has been represented by the Greek letter φ or less commonly by τ. Timeline according to Priya Hemenway, Phidias made the Parthenon statues that seem to embody the golden ratio, plato, in his Timaeus, describes five possible regular solids, some of which are related to the golden ratio
5.
Archimedean solid
–
In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the semi-regular convex polyhedrons composed of regular meeting in identical vertices, excluding the 5 Platonic solids. They differ from the Johnson solids, whose regular polygonal faces do not meet in identical vertices, identical vertices means that for any two vertices, there is a global isometry of the entire solid that takes one vertex to the other. Excluding these two families, there are 13 Archimedean solids. All the Archimedan solids can be made via Wythoff constructions from the Platonic solids with tetrahedral, octahedral and icosahedral symmetry, the Archimedean solids take their name from Archimedes, who discussed them in a now-lost work. Pappus refers to it, stating that Archimedes listed 13 polyhedra, kepler may have also found the elongated square gyrobicupola, at least, he once stated that there were 14 Archimedean solids. However, his published enumeration only includes the 13 uniform polyhedra, here the vertex configuration refers to the type of regular polygons that meet at any given vertex. For example, a configuration of means that a square, hexagon. Some definitions of semiregular polyhedron include one more figure, the square gyrobicupola or pseudo-rhombicuboctahedron. The number of vertices is 720° divided by the angle defect. The cuboctahedron and icosidodecahedron are edge-uniform and are called quasi-regular, the duals of the Archimedean solids are called the Catalan solids. Together with the bipyramids and trapezohedra, these are the face-uniform solids with regular vertices, the snub cube and snub dodecahedron are known as chiral, as they come in a left-handed form and right-handed form. When something comes in forms which are each others three-dimensional mirror image. The different Archimedean and Platonic solids can be related to each other using a handful of general constructions, starting with a Platonic solid, truncation involves cutting away of corners. To preserve symmetry, the cut is in a perpendicular to the line joining a corner to the center of the polyhedron and is the same for all corners. Depending on how much is truncated, different Platonic and Archimedean solids can be created, expansion or cantellation involves moving each face away from the center and taking the convex hull. Expansion with twisting also involves rotating the faces, thus breaking the rectangles corresponding to edges into triangles, the last construction we use here is truncation of both corners and edges. Ignoring scaling, expansion can also be viewed as truncation of corners and edges, note the duality between the cube and the octahedron, and between the dodecahedron and the icosahedron
6.
Mirror image
–
A mirror image is a reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical effect it results from reflection off of such as a mirror or water. It is also a concept in geometry and can be used as a process for 3-D structures. Two-dimensional mirror images can be seen in the reflections of mirrors or other reflecting surfaces, or on a printed surface seen inside out. If we look at an object that is effectively two-dimensional and then turn it towards a mirror, in this example, it is the change in orientation rather than the mirror itself that causes the observed reversal. Another example is when we stand with our backs to the mirror, then we compare the object with its reflection by turning ourselves 180 degrees, towards the mirror. Again we perceive a left-right reversal due to a change in orientation, so, in these examples the mirror does not actually cause the observed reversals. The concept of reflection can be extended to three-dimensional objects, including the inside parts, the term then relates to structural as well as visual aspects. A three-dimensional object is reversed in the perpendicular to the mirror surface. In physics, mirror images are investigated in the subject called geometrical optics, in chemistry, two versions of a molecule, one a mirror image of the other, are called enantiomers if they are not superposable on each other. That is an example of chirality, in general, an object and its mirror image are called enantiomorphs. If a point of an object has coordinates then the image of this point has coordinates, thus reflection is a reversal of the coordinate axis perpendicular to the mirrors surface. In everyday use, a mirror does not reverse right and left, however, there is often a perception of left-right reversal, probably because the left and right of an object are defined by its top and front. Reflection in a mirror does result in a change in chirality, as a consequence, if one looks in a mirror and lets two axes coincide with those in the mirror, then this gives a reversal of the third axis. Similarly, if you stand side-on to a mirror your left and its important to realise there are only two enantiomorphs, the object and its image. So, no matter how the object is oriented towards the mirror, all the images are fundamentally identical. In the photograph of the urn and mirror, the urn is fairly symmetrical front-back, so, its not surprising that no obvious reversal of the urn can be seen in the mirror image. A mirror image appears more obviously three-dimensional if the observer moves and this is because the relative position of objects changes as the observers perspective changes, or is different viewed with each eye
7.
Uniform polyhedron
–
A uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, Uniform polyhedra may be regular, quasi-regular or semi-regular. The faces and vertices need not be convex, so many of the uniform polyhedra are also star polyhedra, there are two infinite classes of uniform polyhedra together with 75 others. Dual polyhedra to uniform polyhedra are face-transitive and have regular vertex figures, the dual of a regular polyhedron is regular, while the dual of an Archimedean solid is a Catalan solid. The concept of uniform polyhedron is a case of the concept of uniform polytope. Coxeter, Longuet-Higgins & Miller define uniform polyhedra to be vertex-transitive polyhedra with regular faces, by a polygon they implicitly mean a polygon in 3-dimensional Euclidean space, these are allowed to be non-convex and to intersect each other. There are some generalizations of the concept of a uniform polyhedron, if the connectedness assumption is dropped, then we get uniform compounds, which can be split as a union of polyhedra, such as the compound of 5 cubes. If we drop the condition that the realization of the polyhedron is non-degenerate and these require a more general definition of polyhedra. Some of the ways they can be degenerate are as follows, some polyhedra have faces that are hidden, in the sense that no points of their interior can be seen from the outside. These are usually not counted as uniform polyhedra, some polyhedra have multiple edges and their faces are the faces of two or more polyhedra, though these are not compounds in the previous sense since the polyhedra share edges. There are some non-orientable polyhedra that have double covers satisfying the definition of a uniform polyhedron, there double covers have doubled faces, edges and vertices. They are usually not counted as uniform polyhedra, there are several polyhedra with doubled faces produced by Wythoffs construction. Most authors do not allow doubled faces and remove them as part of the construction, skillings figure has the property that it has double edges but its faces cannot be written as a union of two uniform polyhedra. Regular convex polyhedra, The Platonic solids date back to the classical Greeks and were studied by the Pythagoreans, Plato, Theaetetus, Timaeus of Locri, the Etruscans discovered the regular dodecahedron before 500 BC. Nonregular uniform convex polyhedra, The cuboctahedron was known by Plato, Archimedes discovered all of the 13 Archimedean solids. His original book on the subject was lost, but Pappus of Alexandria mentioned Archimedes listed 13 polyhedra, piero della Francesca rediscovered the five truncation of the Platonic solids, truncated tetrahedron, truncated octahedron, truncated cube, truncated dodecahedron, and truncated icosahedron. Luca Pacioli republished Francescas work in De divina proportione in 1509, adding the rhombicuboctahedron, calling it a icosihexahedron for its 26 faces, which was drawn by Leonardo da Vinci. Johannes Kepler was the first to publish the complete list of Archimedean solids, in 1619, regular star polyhedra, Kepler discovered two of the regular Kepler–Poinsot polyhedra and Louis Poinsot discovered the other two
8.
Conway polyhedron notation
–
In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations. Conway and Hart extended the idea of using operators, like truncation defined by Kepler, the basic descriptive operators can generate all the Archimedean solids and Catalan solids from regular seeds. For example tC represents a cube, and taC, parsed as t, is a truncated cuboctahedron. The simplest operator dual swaps vertex and face elements, like a cube is an octahedron. Applied in a series, these allow many higher order polyhedra to be generated. A resulting polyhedron will have a fixed topology, while exact geometry is not constrained, the seed polyhedra are the Platonic solids, represented by the first letter of their name, the prisms for n-gonal forms, antiprisms, cupolae and pyramids. Any polyhedron can serve as a seed, as long as the operations can be executed on it, for example regular-faced Johnson solids can be referenced as Jn, for n=1.92. In general, it is difficult to predict the appearance of the composite of two or more operations from a given seed polyhedron. For instance ambo applied twice becomes the same as the operation, aa=e, while a truncation after ambo produces bevel. There has been no general theory describing what polyhedra can be generated in by any set of operators, instead all results have been discovered empirically. Elements are given from the seed to the new forms, assuming seed is a polyhedron, An example image is given for each operation. The basic operations are sufficient to generate the reflective uniform polyhedra, some basic operations can be made as composites of others. Special forms The kis operator has a variation, kn, which only adds pyramids to n-sided faces, the truncate operator has a variation, tn, which only truncates order-n vertices. The operators are applied like functions from right to left, for example, a cuboctahedron is an ambo cube, i. e. t = aC, and a truncated cuboctahedron is t = t = taC. Chirality operator r – reflect – makes the image of the seed. Alternately an overline can be used for picking the other chiral form, the operations are visualized here on cube seed examples, drawn on the surface of the cube, with blue faces that cross original edges, and pink faces that center at original vertices. The first row generates the Archimedean solids and the row the Catalan solids. Comparing each new polyhedron with the cube, each operation can be visually understood, the truncated icosahedron, tI or zD, which is Goldberg polyhedron G, creates more polyhedra which are neither vertex nor face-transitive
9.
Icosahedral symmetry
–
A regular icosahedron has 60 rotational symmetries, and a symmetry order of 120 including transformations that combine a reflection and a rotation. A regular dodecahedron has the set of symmetries, since it is the dual of the icosahedron. The set of orientation-preserving symmetries forms a group referred to as A5, the latter group is also known as the Coxeter group H3, and is also represented by Coxeter notation, and Coxeter diagram. Icosahedral symmetry is not compatible with translational symmetry, so there are no associated crystallographic point groups or space groups. Presentations corresponding to the above are, I, ⟨ s, t ∣ s 2, t 3,5 ⟩ I h, ⟨ s, t ∣ s 3 −2, t 5 −2 ⟩ and these correspond to the icosahedral groups being the triangle groups. The first presentation was given by William Rowan Hamilton in 1856, note that other presentations are possible, for instance as an alternating group. The icosahedral rotation group I is of order 60, the group I is isomorphic to A5, the alternating group of even permutations of five objects. This isomorphism can be realized by I acting on various compounds, notably the compound of five cubes, the group contains 5 versions of Th with 20 versions of D3, and 6 versions of D5. The full icosahedral group Ih has order 120 and it has I as normal subgroup of index 2. The group Ih is isomorphic to I × Z2, or A5 × Z2, with the inversion in the corresponding to element. Ih acts on the compound of five cubes and the compound of five octahedra and it acts on the compound of ten tetrahedra, I acts on the two chiral halves, and −1 interchanges the two halves. Notably, it does not act as S5, and these groups are not isomorphic, the group contains 10 versions of D3d and 6 versions of D5d. I is also isomorphic to PSL2, but Ih is not isomorphic to SL2, all of these classes of subgroups are conjugate, and admit geometric interpretations. Note that the stabilizer of a vertex/edge/face/polyhedron and its opposite are equal, stabilizers of an opposite pair of vertices can be interpreted as stabilizers of the axis they generate. Stabilizers of a pair of edges in Ih give Z2 × Z2 × Z2, there are 5 of these, stabilizers of an opposite pair of faces can be interpreted as stabilizers of the anti-prism they generate. g. Flattening selected subsets of faces to combine each subset into one face, or replacing each face by multiple faces, in aluminum, the icosahedral structure was discovered experimentally three years after this by Dan Shechtman, which earned him the Nobel Prize in 2011. Icosahedral symmetry is equivalently the projective linear group PSL, and is the symmetry group of the modular curve X. The modular curve X is geometrically a dodecahedron with a cusp at the center of each polygonal face, similar geometries occur for PSL and more general groups for other modular curves
10.
Square root
–
In mathematics, a square root of a number a is a number y such that y2 = a, in other words, a number y whose square is a. For example,4 and −4 are square roots of 16 because 42 =2 =16, every nonnegative real number a has a unique nonnegative square root, called the principal square root, which is denoted by √a, where √ is called the radical sign or radix. For example, the square root of 9 is 3, denoted √9 =3. The term whose root is being considered is known as the radicand, the radicand is the number or expression underneath the radical sign, in this example 9. Every positive number a has two roots, √a, which is positive, and −√a, which is negative. Together, these two roots are denoted ± √a, although the principal square root of a positive number is only one of its two square roots, the designation the square root is often used to refer to the principal square root. For positive a, the square root can also be written in exponent notation. Square roots of numbers can be discussed within the framework of complex numbers. In Ancient India, the knowledge of theoretical and applied aspects of square and square root was at least as old as the Sulba Sutras, a method for finding very good approximations to the square roots of 2 and 3 are given in the Baudhayana Sulba Sutra. Aryabhata in the Aryabhatiya, has given a method for finding the root of numbers having many digits. It was known to the ancient Greeks that square roots of positive numbers that are not perfect squares are always irrational numbers, numbers not expressible as a ratio of two integers. This is the theorem Euclid X,9 almost certainly due to Theaetetus dating back to circa 380 BC, the particular case √2 is assumed to date back earlier to the Pythagoreans and is traditionally attributed to Hippasus. Mahāvīra, a 9th-century Indian mathematician, was the first to state that square roots of negative numbers do not exist, a symbol for square roots, written as an elaborate R, was invented by Regiomontanus. An R was also used for Radix to indicate square roots in Gerolamo Cardanos Ars Magna, according to historian of mathematics D. E. Smith, Aryabhatas method for finding the root was first introduced in Europe by Cataneo in 1546. According to Jeffrey A. Oaks, Arabs used the letter jīm/ĝīm, the letter jīm resembles the present square root shape. Its usage goes as far as the end of the century in the works of the Moroccan mathematician Ibn al-Yasamin. The symbol √ for the root was first used in print in 1525 in Christoph Rudolffs Coss
11.
Dihedral angle
–
A dihedral angle is the angle between two intersecting planes. In chemistry it is the angle between planes through two sets of three atoms, having two atoms in common, in solid geometry it is defined as the union of a line and two half-planes that have this line as a common edge. In higher dimension, a dihedral angle represents the angle between two hyperplanes, a dihedral angle is an angle between two intersecting planes on a third plane perpendicular to the line of intersection. A torsion angle is an example of a dihedral angle. In stereochemistry every set of three atoms of a molecule defines a plane, when two such planes intersect, the angle between them is a dihedral angle. Dihedral angles are used to specify the molecular conformation, stereochemical arrangements corresponding to angles between 0° and ±90° are called syn, those corresponding to angles between ±90° and 180° anti. Similarly, arrangements corresponding to angles between 30° and 150° or between −30° and −150° are called clinal and those between 0° and ±30° or ±150° and 180° are called periplanar. The synperiplanar conformation is also known as the syn- or cis-conformation, antiperiplanar as anti or trans, for example, with n-butane two planes can be specified in terms of the two central carbon atoms and either of the methyl carbon atoms. The syn-conformation shown above, with an angle of 60° is less stable than the anti-configuration with a dihedral angle of 180°. For macromolecular usage the symbols T, C, G+, G−, A+, a Ramachandran plot, originally developed in 1963 by G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, is a way to visualize energetically allowed regions for backbone dihedral angles ψ against φ of amino acid residues in protein structure, the figure at right illustrates the definition of the φ and ψ backbone dihedral angles. In a protein chain three dihedral angles are defined as φ, ψ and ω, as shown in the diagram, the planarity of the peptide bond usually restricts ω to be 180° or 0°. The distance between the Cα atoms in the trans and cis isomers is approximately 3.8 and 2.9 Å, the cis isomer is mainly observed in Xaa–Pro peptide bonds. The sidechain dihedral angles tend to cluster near 180°, 60°, and −60°, which are called the trans, gauche+, the stability of certain sidechain dihedral angles is affected by the values φ and ψ. For instance, there are steric interactions between the Cγ of the side chain in the gauche+ rotamer and the backbone nitrogen of the next residue when ψ is near -60°. An alternative method is to calculate the angle between the vectors, nA and nB, which are normal to the planes. Cos φ = − n A ⋅ n B | n A | | n B | where nA · nB is the dot product of the vectors and |nA| |nB| is the product of their lengths. Any plane can also be described by two non-collinear vectors lying in that plane, taking their cross product yields a vector to the plane