Snub heptaheptagonal tiling

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Snub heptaheptagonal tiling
Snub heptaheptagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.7.3.7
Schläfli symbol sr{7,7} or
Wythoff symbol | 7 7 2
Coxeter diagram CDel node h.pngCDel 7.pngCDel node h.pngCDel 7.pngCDel node h.png
CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node.png
Symmetry group [7,7]+, (772)
[7+,4], (7*2)
Dual Order-7-7 floret pentagonal tiling
Properties Vertex-transitive

In geometry, the snub heptaheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{7,7}, constructed from two regular heptagons and three equilateral triangles around every vertex.

Images[edit]

Drawn in chiral pairs, with edges missing between black triangles:

H2 snub 277a.pngH2 snub 277b.png

Symmetry[edit]

A double symmetry coloring can be constructed from [7,4] symmetry with only one color heptagon.

Uniform tiling 74-h01.png

Related tilings[edit]

See also[edit]

References[edit]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links[edit]