Snub hexahexagonal tiling

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Snub hexahexagonal tiling
Snub hexahexagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.6.3.6
Schläfli symbol s{6,4}
sr{6,6}
Wythoff symbol | 6 6 2
Coxeter diagram CDel node h.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 6.pngCDel node h.pngCDel 6.pngCDel node h.png
Symmetry group [6,6]+, (662)
[6+,4], (6*2)
Dual Order-6-6 floret hexagonal tiling
Properties Vertex-transitive

In geometry, the snub hexahexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{6,6}.

Images[edit]

Drawn in chiral pairs, with edges missing between black triangles:

H2 snub 266a.pngH2 snub 266b.png

Symmetry[edit]

A higher symmetry coloring can be constructed from [6,4] symmetry as s{6,4}, CDel node h.pngCDel 6.pngCDel node h.pngCDel 4.pngCDel node.png. In this construction there is only one color of hexagon.

Uniform tiling 64-h02.png

Related polyhedra and tiling[edit]

References[edit]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also[edit]

External links[edit]