Snub tetraapeirogonal tiling

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Snub tetraapeirogonal tiling
Snub tetraapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.4.3.∞
Schläfli symbol sr{∞,4} or
Wythoff symbol | ∞ 4 2
Coxeter diagram CDel node h.pngCDel infin.pngCDel node h.pngCDel 4.pngCDel node h.png or CDel node h.pngCDel split1-ii.pngCDel nodes hh.png
Symmetry group [∞,4]+, (∞42)
Dual Order-4-infinite floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the snub tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{∞,4}.

Images[edit]

Drawn in chiral pairs, with edges missing between black triangles:

H2 snub 24ia.pngH2 snub 24ib.png

Related polyhedra and tiling[edit]

The snub tetrapeirogonal tiling is last in an infinite series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.

See also[edit]

References[edit]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links[edit]