Snub tetraheptagonal tiling

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Snub tetraheptagonal tiling
Snub tetraheptagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.4.3.7
Schläfli symbol sr{7,4} or
Wythoff symbol | 7 4 2
Coxeter diagram CDel node h.pngCDel 7.pngCDel node h.pngCDel 4.pngCDel node h.png
Symmetry group [7,4]+, (742)
Dual Order-7-4 floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the snub tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{7,4}.

Images[edit]

Drawn in chiral pairs, with edges missing between black triangles:

H2 snub 247a.pngH2 snub 247b.png

Dual tiling[edit]

The dual is called an order-7-4 floret pentagonal tiling, defined by face configuration V3.3.4.3.7.

Related polyhedra and tiling[edit]

The snub tetraheptagonal tiling is sixth in a series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.

References[edit]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also[edit]

External links[edit]