Sodium amide

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Sodium amide
Structural formula of sodium amide
Ball and stick, unit cell model of sodium amide
IUPAC name
Sodium amide, sodium azanide[1]
Other names
3D model (JSmol)
ECHA InfoCard 100.029.064
EC Number 231-971-0
UN number 1390
Molar mass 39.01 g mol−1
Appearance Colourless crystals
Odor ammonia-like
Density 1.39 g cm−3
Melting point 210 °C (410 °F; 483 K)
Boiling point 400 °C (752 °F; 673 K)
Solubility 0.004 g/100 mL (liquid ammonia), reacts in ethanol
Acidity (pKa) 38 (conjugate acid) [2]
66.15 J/mol K
76.9 J/mol K
-118.8 kJ/mol
-59 kJ/mol
NFPA 704
Flammability code 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g., diesel fuelHealth code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gasReactivity code 3: Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. E.g., fluorineSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g., cesium, sodiumNFPA 704 four-colored diamond
Flash point 4.44 °C (39.99 °F; 277.59 K)
450 °C (842 °F; 723 K)
Related compounds
Other anions
Sodium bis(trimethylsilyl)amide
Other cations
Lithium amide
Potassium amide
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Sodium amide, commonly called sodamide (systematic name sodium azanide), is the inorganic compound with the formula NaNH2. It is a salt composed of the sodium cation and the azanide anion. This solid, which is dangerously reactive toward water, is white, but commercial samples are typically gray due to the presence of small quantities of metallic iron from the manufacturing process. Such impurities do not usually affect the utility of the reagent.[citation needed] NaNH2 conducts electricity in the fused state, its conductance being similar to that of NaOH in a similar state. NaNH2 has been widely employed as a strong base in organic synthesis.

Preparation and structure[edit]

Sodium amide can be prepared by the reaction of sodium with ammonia gas,[3] but it is usually prepared by the reaction in liquid ammonia using iron(III) nitrate as a catalyst. The reaction is fastest at the boiling point of the ammonia, c. −33 °C. An electride, [Na(NH3)6]+e, is formed as a reaction intermediate.[4]

2 Na + 2 NH3 → 2 NaNH2 + H2

NaNH2 is a salt-like material and as such, crystallizes as an infinite polymer.[5] The geometry about sodium is tetrahedral.[6] In ammonia, NaNH2 forms conductive solutions, consistent with the presence of Na(NH3)6+ and NH2 ions.


Sodium amide is mainly used as a strong base in organic chemistry, often in liquid ammonia solution. It is the reagent of choice for the drying of ammonia (liquid or gaseous)[citation needed]. One of the main advantages to the use of sodamide is that it mainly functions as a nucleophile. In the industrial production of indigo, sodium amide is a component of the highly basic mixture that induces cyclisation of N-phenylglycine. The reaction produces ammonia, which is recycled typically.[7]

Pfleger's synthesis of indigo dye.


Sodium amide induces the loss of two equivalents of hydrogen bromide from a vicinal dibromoalkane to give a carbon-carbon triple bond, as in a preparation of phenylacetylene.[8] Usually two equivalents of sodium amide yields the desired alkyne. Three equivalents are necessary in the preparation of a terminal alkynes because the terminal CH of the resulting alkyne protonates an equivalent amount of base.

Phenylacetylene prepn.png

Hydrogen chloride and ethanol can also be eliminated in this way,[9] as in the preparation of 1-ethoxy-1-butyne.[10]

Ethoxybutyne prepn.png

Cyclization reactions[edit]

Where there is no β-hydrogen to be eliminated, cyclic compounds may be formed, as in the preparation of methylenecyclopropane below.[11]

Methylenecyclopropane prepn.png

Cyclopropenes,[12] aziridines[13] and cyclobutanes[14] may be formed in a similar manner.

Deprotonation of carbon and nitrogen acids[edit]

Carbon acids which can be deprotonated by sodium amide in liquid ammonia include terminal alkynes,[15] methyl ketones,[16] cyclohexanone,[17] phenylacetic acid and its derivatives[18] and diphenylmethane.[19] Acetylacetone loses two protons to form a dianion.[20] Sodium amide will also deprotonate indole[21] and piperidine.[22]

Related non-nucleophilic bases[edit]

It is however poorly soluble in solvents other than ammonia. Its use has been superseded by the related reagents sodium hydride, sodium bis(trimethylsilyl)amide (NaHMDS), and lithium diisopropylamide (LDA).

Other reactions[edit]


Sodium amide reacts violently with water to produce ammonia and sodium hydroxide and will burn in air to give oxides of sodium and nitrogen.

NaNH2 + H2O → NH3 + NaOH
4 NaNH2 + 7 O2 → 2 Na2O + 4 NO2 + 4 H2O

In the presence of limited quantities of air and moisture, such as in a poorly closed container, explosive mixtures of peroxides may form.[26] This is accompanied by a yellowing or browning of the solid. As such, sodium amide is to be stored in a tightly closed container, under an atmosphere of an inert gas. Sodium amide samples which are yellow or brown in color represent explosion risks.[27]


  1. ^
  2. ^ Buncel, E.; Menon, B. (1977). "Carbanion mechanisms: VII. Metallation of hydrocarbon acids by potassium amide and potassium methylamide in tetrahydrofuran and the relative hydride acidities". Journal of Organometallic Chemistry. 141 (1): 1–7. doi:10.1016/S0022-328X(00)90661-2.
  3. ^ Bergstrom, F. W. (1955). "Sodium amide". Organic Syntheses.; Collective Volume, 3, p. 778
  4. ^ Greenlee, K. W.; Henne, A. L. (1946). "Sodium Amide". Inorganic Syntheses. 2: 128–135. doi:10.1002/9780470132333.ch38.
  5. ^ Zalkin, A.; Templeton, D. H. (1956). "The Crystal Structure Of Sodium Amide". Journal of Physical Chemistry. 60 (6): 821–823. doi:10.1021/j150540a042.
  6. ^ Wells, A. F. (1984). Structural Inorganic Chemistry. Oxford: Clarendon Press. ISBN 0-19-855370-6.
  7. ^ L. Lange, W. Treibel "Sodium Amide" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a24_267
  8. ^ Campbell, K. N.; Campbell, B. K. (1950). "Phenylacetylene". Organic Syntheses. 30: 72.; Collective Volume, 4, p. 763
  9. ^ Jones, E. R. H.; Eglinton, G.; Whiting, M. C.; Shaw, B. L. (1954). "Ethoxyacetylene". Organic Syntheses. 34: 46.; Collective Volume, 4, p. 404
    Bou, A.; Pericàs, M. A.; Riera, A.; Serratosa, F. (1987). "Dialkoxyacetylenes: di-tert-butoxyethyne, a valuable synthetic intermediate". Organic Syntheses. 65: 58.; Collective Volume, 8, p. 161
    Magriotis, P. A.; Brown, J. T. (1995). "Phenylthioacetylene". Organic Syntheses. 72: 252.; Collective Volume, 9, p. 656
    Ashworth, P. J.; Mansfield, G. H.; Whiting, M. C. (1955). "2-Butyn-1-ol". Organic Syntheses. 35: 20.; Collective Volume, 4, p. 128
  10. ^ Newman, M. S.; Stalick, W. M. (1977). "1-Ethoxy-1-butyne". Organic Syntheses. 57: 65.; Collective Volume, 6, p. 564
  11. ^ Salaun, J. R.; Champion, J.; Conia, J. M. (1977). "Cyclobutanone from methylenecyclopropane via oxaspiropentane". Organic Syntheses. 57: 36.; Collective Volume, 6, p. 320
  12. ^ Nakamura, M.; Wang, X. Q.; Isaka, M.; Yamago, S.; Nakamura, E. (2003). "Synthesis and (3+2)-cycloaddition of a 2,2-dialkoxy-1-methylenecyclopropane: 6,6-dimethyl-1-methylene-4,8-dioxaspiro(2.5)octane and cis-5-(5,5-dimethyl-1,3-dioxan-2-ylidene)hexahydro-1(2H)-pentalen-2-one". Organic Syntheses. 80: 144.
  13. ^ Bottini, A. T.; Olsen, R. E. (1964). "N-Ethylallenimine". Organic Syntheses. 44: 53.; Collective Volume, 5, p. 541
  14. ^ Skorcz, J. A.; Kaminski, F. E. (1968). "1-Cyanobenzocyclobutene". Organic Syntheses. 48: 55.; Collective Volume, 5, p. 263
  15. ^ Saunders, J. H. (1949). "1-Ethynylcyclohexanol". Organic Syntheses. 29: 47.; Collective Volume, 3, p. 416
    Peterson, P. E.; Dunham, M. (1977). "(Z)-4-Chloro-4-hexenyl trifluoroacetate". Organic Syntheses. 57: 26.; Collective Volume, 6, p. 273
    Kauer, J. C.; Brown, M. (1962). "Tetrolic acid". Organic Syntheses. 42: 97.; Collective Volume, 5, p. 1043
  16. ^ Coffman, D. D. (1940). "Dimethylethynylcarbinol". Organic Syntheses. 20: 40.; Collective Volume, 3, p. 320Hauser, C. R.; Adams, J. T.; Levine, R. (1948). "Diisovalerylmethane". Organic Syntheses. 28: 44.; Collective Volume, 3, p. 291
  17. ^ Vanderwerf, C. A.; Lemmerman, L. V. (1948). "2-Allylcyclohexanone". Organic Syntheses. 28: 8.; Collective Volume, 3, p. 44
  18. ^ Hauser, C. R.; Dunnavant, W. R. (1960). "α,β-Diphenylpropionic acid". Organic Syntheses. 40: 38.; Collective Volume, 5, p. 526
    Kaiser, E. M.; Kenyon, W. G.; Hauser, C. R. (1967). "Ethyl 2,4-diphenylbutanoate". Organic Syntheses. 47: 72.; Collective Volume, 5, p. 559
    Wawzonek, S.; Smolin, E. M. (1951). "α,β-Diphenylcinnamonitrile". Organic Syntheses. 31: 52.; Collective Volume, 4, p. 387
  19. ^ Murphy, W. S.; Hamrick, P. J.; Hauser, C. R. (1968). "1,1-Diphenylpentane". Organic Syntheses. 48: 80.; Collective Volume, 5, p. 523
  20. ^ Hampton, K. G.; Harris, T. M.; Hauser, C. R. (1971). "Phenylation of diphenyliodonium chloride: 1-phenyl-2,4-pentanedione". Organic Syntheses. 51: 128.; Collective Volume, 6, p. 928
    Hampton, K. G.; Harris, T. M.; Hauser, C. R. (1967). "2,4-Nonanedione". Organic Syntheses. 47: 92.; Collective Volume, 5, p. 848
  21. ^ Potts, K. T.; Saxton, J. E. (1960). "1-Methylindole". Organic Syntheses. 40: 68.; Collective Volume, 5, p. 769
  22. ^ Bunnett, J. F.; Brotherton, T. K.; Williamson, S. M. (1960). "N-β-Naphthylpiperidine". Organic Syntheses. 40: 74.; Collective Volume, 5, p. 816
  23. ^ Brazen, W. R.; Hauser, C. R. (1954). "2-Methylbenzyldimethylamine". Organic Syntheses. 34: 61.; Collective Volume, 4, p. 585
  24. ^ Allen, C. F. H.; VanAllan, J. (1944). "Phenylmethylglycidic ester". Organic Syntheses. 24: 82.; Collective Volume, 3, p. 727
  25. ^ Allen, C. F. H.; VanAllan, J. (1942). "2-Methylindole". Organic Syntheses. 22: 94.; Collective Volume, 3, p. 597
  26. ^ Clark, Donald E (2001). "Peroxides and peroxide-forming compounds". Chemical Health and Safety. 8 (5): 12–22. doi:10.1016/S1074-9098(01)00247-7. ISSN 1074-9098.
  27. ^ "Sodium amide SOP". Princeton.