1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

2.
Prime number
–
A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a number is called a composite number. For example,5 is prime because 1 and 5 are its only positive integer factors, the property of being prime is called primality. A simple but slow method of verifying the primality of a number n is known as trial division. It consists of testing whether n is a multiple of any integer between 2 and n, algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of forms, such as Mersenne numbers. As of January 2016, the largest known prime number has 22,338,618 decimal digits, there are infinitely many primes, as demonstrated by Euclid around 300 BC. There is no simple formula that separates prime numbers from composite numbers. However, the distribution of primes, that is to say, many questions regarding prime numbers remain open, such as Goldbachs conjecture, and the twin prime conjecture. Such questions spurred the development of branches of number theory. Prime numbers give rise to various generalizations in other domains, mainly algebra, such as prime elements. A natural number is called a number if it has exactly two positive divisors,1 and the number itself. Natural numbers greater than 1 that are not prime are called composite, among the numbers 1 to 6, the numbers 2,3, and 5 are the prime numbers, while 1,4, and 6 are not prime. 1 is excluded as a number, for reasons explained below. 2 is a number, since the only natural numbers dividing it are 1 and 2. Next,3 is prime, too,1 and 3 do divide 3 without remainder, however,4 is composite, since 2 is another number dividing 4 without remainder,4 =2 ·2. 5 is again prime, none of the numbers 2,3, next,6 is divisible by 2 or 3, since 6 =2 ·3. The image at the right illustrates that 12 is not prime,12 =3 ·4, no even number greater than 2 is prime because by definition, any such number n has at least three distinct divisors, namely 1,2, and n

3.
Polynomial
–
In mathematics, a polynomial is an expression consisting of variables and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponents. An example of a polynomial of a single indeterminate x is x2 − 4x +7, an example in three variables is x3 + 2xyz2 − yz +1. Polynomials appear in a variety of areas of mathematics and science. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, central concepts in algebra, the word polynomial joins two diverse roots, the Greek poly, meaning many, and the Latin nomen, or name. It was derived from the binomial by replacing the Latin root bi- with the Greek poly-. The word polynomial was first used in the 17th century, the x occurring in a polynomial is commonly called either a variable or an indeterminate. When the polynomial is considered as an expression, x is a symbol which does not have any value. It is thus correct to call it an indeterminate. However, when one considers the function defined by the polynomial, then x represents the argument of the function, many authors use these two words interchangeably. It is a convention to use uppercase letters for the indeterminates. However one may use it over any domain where addition and multiplication are defined, in particular, when a is the indeterminate x, then the image of x by this function is the polynomial P itself. This equality allows writing let P be a polynomial as a shorthand for let P be a polynomial in the indeterminate x. A polynomial is an expression that can be built from constants, the word indeterminate means that x represents no particular value, although any value may be substituted for it. The mapping that associates the result of substitution to the substituted value is a function. This can be expressed concisely by using summation notation, ∑ k =0 n a k x k That is. Each term consists of the product of a number—called the coefficient of the term—and a finite number of indeterminates, because x = x1, the degree of an indeterminate without a written exponent is one. A term and a polynomial with no indeterminates are called, respectively, a constant term, the degree of a constant term and of a nonzero constant polynomial is 0. The degree of the polynomial,0, is generally treated as not defined

4.
Cryptography
–
Cryptography or cryptology is the practice and study of techniques for secure communication in the presence of third parties called adversaries. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, Applications of cryptography include ATM cards, computer passwords, and electronic commerce. Cryptography prior to the age was effectively synonymous with encryption. The originator of an encrypted message shared the decoding technique needed to recover the information only with intended recipients. The cryptography literature often uses Alice for the sender, Bob for the intended recipient and it is theoretically possible to break such a system, but it is infeasible to do so by any known practical means. The growth of technology has raised a number of legal issues in the information age. Cryptographys potential for use as a tool for espionage and sedition has led governments to classify it as a weapon and to limit or even prohibit its use. In some jurisdictions where the use of cryptography is legal, laws permit investigators to compel the disclosure of encryption keys for documents relevant to an investigation, Cryptography also plays a major role in digital rights management and copyright infringement of digital media. Until modern times, cryptography referred almost exclusively to encryption, which is the process of converting ordinary information into unintelligible text, decryption is the reverse, in other words, moving from the unintelligible ciphertext back to plaintext. A cipher is a pair of algorithms that create the encryption, the detailed operation of a cipher is controlled both by the algorithm and in each instance by a key. The key is a secret, usually a short string of characters, historically, ciphers were often used directly for encryption or decryption without additional procedures such as authentication or integrity checks. There are two kinds of cryptosystems, symmetric and asymmetric, in symmetric systems the same key is used to encrypt and decrypt a message. Data manipulation in symmetric systems is faster than asymmetric systems as they generally use shorter key lengths, asymmetric systems use a public key to encrypt a message and a private key to decrypt it. Use of asymmetric systems enhances the security of communication, examples of asymmetric systems include RSA, and ECC. Symmetric models include the commonly used AES which replaced the older DES, in colloquial use, the term code is often used to mean any method of encryption or concealment of meaning. However, in cryptography, code has a specific meaning. It means the replacement of a unit of plaintext with a code word, English is more flexible than several other languages in which cryptology is always used in the second sense above. RFC2828 advises that steganography is sometimes included in cryptology, the study of characteristics of languages that have some application in cryptography or cryptology is called cryptolinguistics

5.
Mersenne prime
–
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a number that can be written in the form Mn = 2n −1 for some integer n. They are named after Marin Mersenne, a French Minim friar, the first four Mersenne primes are 3,7,31, and 127. If n is a number then so is 2n −1. The definition is therefore unchanged when written Mp = 2p −1 where p is assumed prime, more generally, numbers of the form Mn = 2n −1 without the primality requirement are called Mersenne numbers. The smallest composite pernicious Mersenne number is 211 −1 =2047 =23 ×89, Mersenne primes Mp are also noteworthy due to their connection to perfect numbers. As of January 2016,49 Mersenne primes are known, the largest known prime number 274,207,281 −1 is a Mersenne prime. Since 1997, all newly found Mersenne primes have been discovered by the “Great Internet Mersenne Prime Search”, many fundamental questions about Mersenne primes remain unresolved. It is not even whether the set of Mersenne primes is finite or infinite. The Lenstra–Pomerance–Wagstaff conjecture asserts that there are infinitely many Mersenne primes,23 | M11,47 | M23,167 | M83,263 | M131,359 | M179,383 | M191,479 | M239, and 503 | M251. Since for these primes p, 2p +1 is congruent to 7 mod 8, so 2 is a quadratic residue mod 2p +1, since p is a prime, it must be p or 1. The first four Mersenne primes are M2 =3, M3 =7, M5 =31, a basic theorem about Mersenne numbers states that if Mp is prime, then the exponent p must also be prime. This follows from the identity 2 a b −1 = ⋅ = ⋅ and this rules out primality for Mersenne numbers with composite exponent, such as M4 =24 −1 =15 =3 ×5 = ×. Though the above examples might suggest that Mp is prime for all p, this is not the case. The evidence at hand does suggest that a randomly selected Mersenne number is more likely to be prime than an arbitrary randomly selected odd integer of similar size. Nonetheless, prime Mp appear to grow increasingly sparse as p increases, in fact, of the 2,270,720 prime numbers p up to 37,156,667, Mp is prime for only 45 of them. The lack of any simple test to determine whether a given Mersenne number is prime makes the search for Mersenne primes a difficult task, the Lucas–Lehmer primality test is an efficient primality test that greatly aids this task. The search for the largest known prime has somewhat of a cult following, consequently, a lot of computer power has been expended searching for new Mersenne primes, much of which is now done using distributed computing

6.
NIST
–
The National Institute of Standards and Technology is a measurement standards laboratory, and a non-regulatory agency of the United States Department of Commerce. Its mission is to promote innovation and industrial competitiveness, in 1821, John Quincy Adams had declared Weights and measures may be ranked among the necessities of life to every individual of human society. From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, president Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000, a laboratory site was constructed in Washington, DC, and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures, the Bureau developed instruments for electrical units, in 1905 a meeting was called that would be the first National Conference on Weights and Measures. Quality standards were developed for products including some types of clothing, automobile brake systems and headlamps, antifreeze, during World War I, the Bureau worked on multiple problems related to war production, even operating its own facility to produce optical glass when European supplies were cut off. Between the wars, Harry Diamond of the Bureau developed a blind approach radio aircraft landing system, in 1948, financed by the Air Force, the Bureau began design and construction of SEAC, the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes, about the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS and used for research there. A mobile version, DYSEAC, was built for the Signal Corps in 1954, due to a changing mission, the National Bureau of Standards became the National Institute of Standards and Technology in 1988. Following 9/11, NIST conducted the investigation into the collapse of the World Trade Center buildings. NIST had a budget for fiscal year 2007 of about $843.3 million. NISTs 2009 budget was $992 million, and it also received $610 million as part of the American Recovery, NIST employs about 2,900 scientists, engineers, technicians, and support and administrative personnel. About 1,800 NIST associates complement the staff, in addition, NIST partners with 1,400 manufacturing specialists and staff at nearly 350 affiliated centers around the country. NIST publishes the Handbook 44 that provides the Specifications, tolerances, the Congress of 1866 made use of the metric system in commerce a legally protected activity through the passage of Metric Act of 1866. NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, nISTs activities are organized into laboratory programs and extramural programs. Effective October 1,2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six, nISTs Boulder laboratories are best known for NIST‑F1, which houses an atomic clock. NIST‑F1 serves as the source of the official time. NIST also operates a neutron science user facility, the NIST Center for Neutron Research, the NCNR provides scientists access to a variety of neutron scattering instruments, which they use in many research fields