1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

2.
60 (number)
–
60 is the natural number following 59 and preceding 61. Being three times 20, it is called three score in older literature. It is a number, with divisors 1,2,3,4,5,6,10,12,15,20,30. Because it is the sum of its divisors, it is a unitary perfect number. Being ten times a number, it is a semiperfect number. It is the smallest number divisible by the numbers 1 to 6 and it is the smallest number with exactly 12 divisors. It is the sum of a pair of twin primes and the sum of four consecutive primes and it is adjacent to two primes. It is the smallest number that is the sum of two odd primes in six ways, the smallest non-solvable group has order 60. There are four Archimedean solids with 60 vertices, the icosahedron, the rhombicosidodecahedron, the snub dodecahedron. The skeletons of these polyhedra form 60-node vertex-transitive graphs, there are also two Archimedean solids with 60 edges, the snub cube and the icosidodecahedron. The skeleton of the forms a 60-edge symmetric graph. There are 60 one-sided hexominoes, the polyominoes made from six squares, in geometry, it is the number of seconds in a minute, and the number of minutes in a degree. In normal space, the three angles of an equilateral triangle each measure 60 degrees, adding up to 180 degrees. Because it is divisible by the sum of its digits in base 10, a number system with base 60 is called sexagesimal. It is the smallest positive integer that is written only the smallest. The first fullerene to be discovered was buckminsterfullerene C60, an allotrope of carbon with 60 atoms in each molecule and this ball is known as a buckyball, and looks like a soccer ball. The atomic number of neodymium is 60, and cobalt-60 is an isotope of cobalt. The electrical utility frequency in western Japan, South Korea, Taiwan, the Philippines, Saudi Arabia, the United States, and several other countries in the Americas is 60 Hz

3.
42 (number)
–
42 is the natural number that succeeds 41 and precedes 43. Forty-two is a number and an abundant number, its prime factorization 2 ·3 ·7 makes it the second sphenic number. As with all numbers of this form, the aliquot sum is abundant by 12. 42 is also the second number to be bracketed by twin primes,30 is also a pronic number. 42 has a 14-member aliquot sequence 42,54,66,78,90,144,259,45,33,15,9,4,3,1,0 and is part of the aliquot sequence commencing with the first sphenic number 30. Further,42 is the 10th member of the 3-aliquot tree, additional properties of the number 42 include, It is the third primary pseudoperfect number. It is an alternating sign matrix number, that is, the number of 4-by-4 alternating sign matrices and it is the number of partitions of 10—the number of ways of expressing 10 as a sum of positive integers. It is the third pentadecagonal number and it is a meandric number and an open meandric number. It is conjectured to be the factor in the leading order term of the sixth moment of the Riemann zeta function. In particular, Conrey & Ghosh have conjectured that 1 T ∫0 T | ζ |6 d t ∼429, ∏ p 4 log 9 T. where the infinite product is over all prime numbers, p.42 is a Størmer number. Whether there are other remains a open question. 42 is a number, as σ2 = σ = 6n. 42 is the number of the original Smith number, Both the sum of its digits. The dimension of the Borel subalgebra in the exceptional Lie algebra e6 is 42,42 is a perfect score on the USA Math Olympiad and International Mathematical Olympiad. 42 is the maximum of core points awarded in International Baccalaureate Diploma Programme,42 is the sum of the first 6 positive even numbers. 42 is the number of molybdenum. 42 is the mass of one of the naturally occurring stable isotopes of calcium. The angle rounded to whole degrees for which a rainbow appears, the first half of the journey consists of free-fall acceleration, while the second half consists of an exactly equal deceleration

4.
Natural number
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory

5.
66 (number)
–
66 is the natural number following 65 and preceding 67. Usages of this include,66 is, a sphenic number. A semiperfect number, being a multiple of a perfect number, an Erdős–Woods number, since it is possible to find sequences of 66 consecutive integers such that each inner member shares a factor with either the first or the last member. Palindromic and a repdigit in bases 10,21 and 32 a Harshad number in bases 2,4,5,6,7,8,11,12,13 and 16. Messier object Spiral Galaxy M66, a magnitude 10.0 galaxy in the constellation Leo, the New General Catalogue object NGC66, a peculiar barred spiral galaxy in the constellation Cetus. The Saros number of the solar eclipse series began on 12 March -756. The duration of Saros series 66 was 1298.1 years, the Saros number of the lunar eclipse series which began on 12 August -671 and ended on 27 January 826. The duration of Saros series 66 was 1496.5 years, the atomic number of dysprosium, a lanthanide. 66 megahertz is a common divisor for the front side bus speed, overall central processing unit speed, and base bus speed. On a Core 2 CPU, and a Core 2 motherboard, the FSB is 1066 MHz, the speed is usually 666.67 MHz. The designation of the historic U. S. Route 66, the designation of US Interstate 66, a freeway that runs from Virginia to Washington, D. C. The designation of 36 US state and 2 territorial highways, phillips 66, a brand of gasoline and service station in the United States. The total number of chapters in the Bible book of Isaiah, the number of verses in Chapter 3 of the book of Lamentations in the Old Testament. The total number of books in the Protestant edition of the Bible combined, in Abjad numerals, The Name Of Allah numeric value is 66. The Green Bay Packers of the National Football League retired jersey number 66 for linebacker Ray Nitschke, the last Packer to wear number 66 before it was retired in 1983 to honor Nitschke was offensive tackle Larry Pfohl, who is better known to professional wrestling fans as Lex Luger. Jersey number 66 was retired by the Pittsburgh Penguins of the National Hockey League in honor of Mario Lemieux, sixty Six is a 2006 British movie about a bar mitzvah in London on the day of the 1966 World Cup final. In the Star Wars movie series, Order 66 is an order to the clone troopers to kill the Jedi commanding them. Route 66 was a popular US television series on CBS from 1960 to 1964, in the video game Fullmetal Alchemist, elusive villain Barry the Chopper is imprisoned in cell number 66, which later becomes his alias when battling the brothers at Laboratory Five

6.
150 (number)
–
150 is the natural number following 149 and preceding 151. 150 is the sum of eight consecutive primes, given 150, the Mertens function returns 0. The sum of Eulers totient function φ over the first twenty-two integers is 150,150 is a Harshad number and an abundant number. The last numbered Psalm in the Bible, Psalm 150, perhaps the one most often set to music,150 is also, The number of degrees in the quincunx astrological aspect explored by Johannes Kepler

7.
David Masser
–
David William Masser is Professor of Mathematics at the University of Basel, in Basel, Switzerland. He obtained his Ph. D. from University of Cambridge in 1974 on the topic of Elliptic Functions, before his appointment at the Mathematics Institute in Basel, Masser taught at the University of Michigan. He was a speaker at the International Congress of Mathematicians at Warsaw in 1983. He is known for his work in theory, and was elected to the Royal Society in 2005. Along with Joseph Oesterlé, Masser formulated the abc conjecture in 1985 and it has been stated that this conjecture is the most important unsolved problem in Diophantine analysis

8.
Exponentiation
–
Exponentiation is a mathematical operation, written as bn, involving two numbers, the base b and the exponent n. The exponent is usually shown as a superscript to the right of the base, Some common exponents have their own names, the exponent 2 is called the square of b or b squared, the exponent 3 is called the cube of b or b cubed. The exponent −1 of b, or 1 / b, is called the reciprocal of b, when n is a positive integer and b is not zero, b−n is naturally defined as 1/bn, preserving the property bn × bm = bn + m. The definition of exponentiation can be extended to any real or complex exponent. Exponentiation by integer exponents can also be defined for a variety of algebraic structures. The term power was used by the Greek mathematician Euclid for the square of a line, archimedes discovered and proved the law of exponents, 10a 10b = 10a+b, necessary to manipulate powers of 10. In the late 16th century, Jost Bürgi used Roman numerals for exponents, early in the 17th century, the first form of our modern exponential notation was introduced by Rene Descartes in his text titled La Géométrie, there, the notation is introduced in Book I. Nicolas Chuquet used a form of notation in the 15th century. The word exponent was coined in 1544 by Michael Stifel, samuel Jeake introduced the term indices in 1696. In the 16th century Robert Recorde used the square, cube, zenzizenzic, sursolid, zenzicube, second sursolid. Biquadrate has been used to refer to the power as well. Some mathematicians used exponents only for greater than two, preferring to represent squares as repeated multiplication. Thus they would write polynomials, for example, as ax + bxx + cx3 + d, another historical synonym, involution, is now rare and should not be confused with its more common meaning. In 1748 Leonhard Euler wrote consider exponentials or powers in which the exponent itself is a variable and it is clear that quantities of this kind are not algebraic functions, since in those the exponents must be constant. With this introduction of transcendental functions, Euler laid the foundation for the introduction of natural logarithm as the inverse function for y = ex. The expression b2 = b ⋅ b is called the square of b because the area of a square with side-length b is b2, the expression b3 = b ⋅ b ⋅ b is called the cube of b because the volume of a cube with side-length b is b3. The exponent indicates how many copies of the base are multiplied together, for example,35 =3 ⋅3 ⋅3 ⋅3 ⋅3 =243. The base 3 appears 5 times in the multiplication, because the exponent is 5

9.
International Standard Serial Number
–
An International Standard Serial Number is an eight-digit serial number used to uniquely identify a serial publication. The ISSN is especially helpful in distinguishing between serials with the same title, ISSN are used in ordering, cataloging, interlibrary loans, and other practices in connection with serial literature. The ISSN system was first drafted as an International Organization for Standardization international standard in 1971, ISO subcommittee TC 46/SC9 is responsible for maintaining the standard. When a serial with the content is published in more than one media type. For example, many serials are published both in print and electronic media, the ISSN system refers to these types as print ISSN and electronic ISSN, respectively. The format of the ISSN is an eight digit code, divided by a hyphen into two four-digit numbers, as an integer number, it can be represented by the first seven digits. The last code digit, which may be 0-9 or an X, is a check digit. Formally, the form of the ISSN code can be expressed as follows, NNNN-NNNC where N is in the set, a digit character. The ISSN of the journal Hearing Research, for example, is 0378-5955, where the final 5 is the check digit, for calculations, an upper case X in the check digit position indicates a check digit of 10. To confirm the check digit, calculate the sum of all eight digits of the ISSN multiplied by its position in the number, the modulus 11 of the sum must be 0. There is an online ISSN checker that can validate an ISSN, ISSN codes are assigned by a network of ISSN National Centres, usually located at national libraries and coordinated by the ISSN International Centre based in Paris. The International Centre is an organization created in 1974 through an agreement between UNESCO and the French government. The International Centre maintains a database of all ISSNs assigned worldwide, at the end of 2016, the ISSN Register contained records for 1,943,572 items. ISSN and ISBN codes are similar in concept, where ISBNs are assigned to individual books, an ISBN might be assigned for particular issues of a serial, in addition to the ISSN code for the serial as a whole. An ISSN, unlike the ISBN code, is an identifier associated with a serial title. For this reason a new ISSN is assigned to a serial each time it undergoes a major title change, separate ISSNs are needed for serials in different media. Thus, the print and electronic versions of a serial need separate ISSNs. Also, a CD-ROM version and a web version of a serial require different ISSNs since two different media are involved, however, the same ISSN can be used for different file formats of the same online serial

10.
On-Line Encyclopedia of Integer Sequences
–
The On-Line Encyclopedia of Integer Sequences, also cited simply as Sloanes, is an online database of integer sequences. It was created and maintained by Neil Sloane while a researcher at AT&T Labs, Sloane continues to be involved in the OEIS in his role as President of the OEIS Foundation. OEIS records information on integer sequences of interest to professional mathematicians and amateurs, and is widely cited. As of 30 December 2016 it contains nearly 280,000 sequences, the database is searchable by keyword and by subsequence. Neil Sloane started collecting integer sequences as a student in 1965 to support his work in combinatorics. The database was at first stored on punched cards and he published selections from the database in book form twice, A Handbook of Integer Sequences, containing 2,372 sequences in lexicographic order and assigned numbers from 1 to 2372. The Encyclopedia of Integer Sequences with Simon Plouffe, containing 5,488 sequences and these books were well received and, especially after the second publication, mathematicians supplied Sloane with a steady flow of new sequences. The collection became unmanageable in book form, and when the database had reached 16,000 entries Sloane decided to go online—first as an e-mail service, as a spin-off from the database work, Sloane founded the Journal of Integer Sequences in 1998. The database continues to grow at a rate of some 10,000 entries a year, Sloane has personally managed his sequences for almost 40 years, but starting in 2002, a board of associate editors and volunteers has helped maintain the database. In 2004, Sloane celebrated the addition of the 100, 000th sequence to the database, A100000, in 2006, the user interface was overhauled and more advanced search capabilities were added. In 2010 an OEIS wiki at OEIS. org was created to simplify the collaboration of the OEIS editors and contributors, besides integer sequences, the OEIS also catalogs sequences of fractions, the digits of transcendental numbers, complex numbers and so on by transforming them into integer sequences. Sequences of rationals are represented by two sequences, the sequence of numerators and the sequence of denominators, important irrational numbers such as π =3.1415926535897. are catalogued under representative integer sequences such as decimal expansions, binary expansions, or continued fraction expansions. The OEIS was limited to plain ASCII text until 2011, yet it still uses a form of conventional mathematical notation. Greek letters are represented by their full names, e. g. mu for μ. Every sequence is identified by the letter A followed by six digits, sometimes referred to without the leading zeros, individual terms of sequences are separated by commas. Digit groups are not separated by commas, periods, or spaces, a represents the nth term of the sequence. Zero is often used to represent non-existent sequence elements, for example, A104157 enumerates the smallest prime of n² consecutive primes to form an n×n magic square of least magic constant, or 0 if no such magic square exists. The value of a is 2, a is 1480028129, but there is no such 2×2 magic square, so a is 0

11.
Primorial
–
The rest of this article uses the latter interpretation. The name primorial, coined by Harvey Dubner, draws an analogy to primes the same way the name relates to factors. For the nth prime number pn, the primorial pn# is defined as the product of the first n primes, p n # ≡ ∏ k =1 n p k, where pk is the kth prime number. For instance, p5# signifies the product of the first 5 primes, the first six primorials pn# are,1,2,6,30,210,2310. The sequence also includes p0# =1 as empty product, asymptotically, primorials pn# grow according to, p n # = e n log n, where o is little-o notation. This is equivalent to, n # = {1 if n =0,1 # × n if n is prime # if n is composite. For example, 12# represents the product of those primes ≤12,12 # =2 ×3 ×5 ×7 ×11 =2310, since π =5, this can be calculated as,12 # = p π # = p 5 # =2310. Consider the first 12 primorials n#,1,2,6,6,30,30,210,210,210,210,2310,2310. We see that for composite n every term n# simply duplicates the preceding term #, in the above example we have 12# = p5# = 11# since 12 is a composite number. The natural logarithm of n# is the first Chebyshev function, written ϑ or θ, primorials n# grow according to, ln ∼ n. The idea of multiplying all known primes occurs in some proofs of the infinitude of the prime numbers, primorials play a role in the search for prime numbers in additive arithmetic progressions. For instance, 7009223613394100000♠2236133941 + 23# results in a prime, beginning a sequence of thirteen primes found by repeatedly adding 23#, 23# is also the common difference in arithmetic progressions of fifteen and sixteen primes. Every highly composite number is a product of primorials, primorials are all square-free integers, and each one has more distinct prime factors than any number smaller than it. For each primorial n, the fraction φ/n is smaller than it for any lesser integer, any completely multiplicative function is defined by its values at primorials, since it is defined by its values at primes, which can be recovered by division of adjacent values. Base systems corresponding to primorials have a proportion of repeating fractions than any smaller base. Every primorial is a sparsely totient number, the n-compositorial of a composite number n is the product of all composite numbers up to and including n. The n-compositorial is equal to the n-factorial divided by the primorial n#, the compositorials are 1,4,24,192,1728, 7004172800000000000♠17280, 7005207360000000000♠207360, 7006290304000000000♠2903040, 7007435456000000000♠43545600, 7008696729600000000♠696729600

12.
Square number
–
In mathematics, a square number or perfect square is an integer that is the square of an integer, in other words, it is the product of some integer with itself. For example,9 is a number, since it can be written as 3 × 3. The usual notation for the square of a n is not the product n × n. The name square number comes from the name of the shape, another way of saying that a integer is a square number, is that its square root is again an integer. For example, √9 =3, so 9 is a square number, a positive integer that has no perfect square divisors except 1 is called square-free. For a non-negative integer n, the nth square number is n2, the concept of square can be extended to some other number systems. If rational numbers are included, then a square is the ratio of two integers, and, conversely, the ratio of two square integers is a square, e. g.49 =2. Starting with 1, there are ⌊√m⌋ square numbers up to and including m, the squares smaller than 602 =3600 are, The difference between any perfect square and its predecessor is given by the identity n2 −2 = 2n −1. Equivalently, it is possible to count up square numbers by adding together the last square, the last squares root, and the current root, that is, n2 =2 + + n. The number m is a number if and only if one can compose a square of m equal squares. Hence, a square with side length n has area n2, the expression for the nth square number is n2. This is also equal to the sum of the first n odd numbers as can be seen in the above pictures, the formula follows, n 2 = ∑ k =1 n. So for example,52 =25 =1 +3 +5 +7 +9, there are several recursive methods for computing square numbers. For example, the nth square number can be computed from the square by n2 =2 + + n =2 +. Alternatively, the nth square number can be calculated from the two by doubling the th square, subtracting the th square number, and adding 2. For example, 2 × 52 −42 +2 = 2 × 25 −16 +2 =50 −16 +2 =36 =62, a square number is also the sum of two consecutive triangular numbers. The sum of two square numbers is a centered square number. Every odd square is also an octagonal number