1.
Convex set
–
In convex geometry, a convex set is a subset of an affine space that is closed under convex combinations. For example, a cube is a convex set, but anything that is hollow or has an indent, for example. The boundary of a set is always a convex curve. The intersection of all convex sets containing a given subset A of Euclidean space is called the hull of A. It is the smallest convex set containing A, a convex function is a real-valued function defined on an interval with the property that its epigraph is a convex set. Convex minimization is a subfield of optimization that studies the problem of minimizing convex functions over convex sets, the branch of mathematics devoted to the study of properties of convex sets and convex functions is called convex analysis. The notion of a set can be generalized as described below. Let S be a space over the real numbers, or, more generally. A set C in S is said to be if, for all x and y in C and all t in the interval. In other words, every point on the segment connecting x and y is in C. This implies that a set in a real or complex topological vector space is path-connected. Furthermore, C is strictly convex if every point on the segment connecting x and y other than the endpoints is inside the interior of C. A set C is called convex if it is convex. The convex subsets of R are simply the intervals of R, some examples of convex subsets of the Euclidean plane are solid regular polygons, solid triangles, and intersections of solid triangles. Some examples of convex subsets of a Euclidean 3-dimensional space are the Archimedean solids, the Kepler-Poinsot polyhedra are examples of non-convex sets. A set that is not convex is called a non-convex set, the complement of a convex set, such as the epigraph of a concave function, is sometimes called a reverse convex set, especially in the context of mathematical optimization. If S is a set in n-dimensional space, then for any collection of r, r >1. Ur in S, and for any nonnegative numbers λ1, + λr =1, then one has, ∑ k =1 r λ k u k ∈ S

2.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space

3.
Set (mathematics)
–
In mathematics, a set is a well-defined collection of distinct objects, considered as an object in its own right. For example, the numbers 2,4, and 6 are distinct objects when considered separately, Sets are one of the most fundamental concepts in mathematics. Developed at the end of the 19th century, set theory is now a part of mathematics. In mathematics education, elementary topics such as Venn diagrams are taught at a young age, the German word Menge, rendered as set in English, was coined by Bernard Bolzano in his work The Paradoxes of the Infinite. A set is a collection of distinct objects. The objects that make up a set can be anything, numbers, people, letters of the alphabet, other sets, Sets are conventionally denoted with capital letters. Sets A and B are equal if and only if they have precisely the same elements. Cantors definition turned out to be inadequate, instead, the notion of a set is taken as a notion in axiomatic set theory. There are two ways of describing, or specifying the members of, a set, one way is by intensional definition, using a rule or semantic description, A is the set whose members are the first four positive integers. B is the set of colors of the French flag, the second way is by extension – that is, listing each member of the set. An extensional definition is denoted by enclosing the list of members in curly brackets, one often has the choice of specifying a set either intensionally or extensionally. In the examples above, for instance, A = C and B = D, there are two important points to note about sets. First, in a definition, a set member can be listed two or more times, for example. However, per extensionality, two definitions of sets which differ only in one of the definitions lists set members multiple times, define, in fact. Hence, the set is identical to the set. The second important point is that the order in which the elements of a set are listed is irrelevant and we can illustrate these two important points with an example, = =. For sets with many elements, the enumeration of members can be abbreviated, for instance, the set of the first thousand positive integers may be specified extensionally as, where the ellipsis indicates that the list continues in the obvious way. Ellipses may also be used where sets have infinitely many members, thus the set of positive even numbers can be written as

4.
Euclidean space
–
In geometry, Euclidean space encompasses the two-dimensional Euclidean plane, the three-dimensional space of Euclidean geometry, and certain other spaces. It is named after the Ancient Greek mathematician Euclid of Alexandria, the term Euclidean distinguishes these spaces from other types of spaces considered in modern geometry. Euclidean spaces also generalize to higher dimensions, classical Greek geometry defined the Euclidean plane and Euclidean three-dimensional space using certain postulates, while the other properties of these spaces were deduced as theorems. Geometric constructions are used to define rational numbers. It means that points of the space are specified with collections of real numbers and this approach brings the tools of algebra and calculus to bear on questions of geometry and has the advantage that it generalizes easily to Euclidean spaces of more than three dimensions. From the modern viewpoint, there is only one Euclidean space of each dimension. With Cartesian coordinates it is modelled by the coordinate space of the same dimension. In one dimension, this is the line, in two dimensions, it is the Cartesian plane, and in higher dimensions it is a coordinate space with three or more real number coordinates. One way to think of the Euclidean plane is as a set of points satisfying certain relationships, expressible in terms of distance, for example, there are two fundamental operations on the plane. One is translation, which means a shifting of the plane so that point is shifted in the same direction. The other is rotation about a point in the plane. In order to all of this mathematically precise, the theory must clearly define the notions of distance, angle, translation. Even when used in theories, Euclidean space is an abstraction detached from actual physical locations, specific reference frames, measurement instruments. The standard way to such space, as carried out in the remainder of this article, is to define the Euclidean plane as a two-dimensional real vector space equipped with an inner product. The reason for working with vector spaces instead of Rn is that it is often preferable to work in a coordinate-free manner. Once the Euclidean plane has been described in language, it is actually a simple matter to extend its concept to arbitrary dimensions. For the most part, the vocabulary, formulae, and calculations are not made any more difficult by the presence of more dimensions. Intuitively, the distinction says merely that there is no choice of where the origin should go in the space

5.
Theorem
–
In mathematics, a theorem is a statement that has been proved on the basis of previously established statements, such as other theorems, and generally accepted statements, such as axioms. A theorem is a consequence of the axioms. The proof of a theorem is a logical argument for the theorem statement given in accord with the rules of a deductive system. The proof of a theorem is interpreted as justification of the truth of the theorem statement. In light of the requirement that theorems be proved, the concept of a theorem is fundamentally deductive, in contrast to the notion of a scientific law, many mathematical theorems are conditional statements. In this case, the proof deduces the conclusion from conditions called hypotheses or premises, however, the conditional could be interpreted differently in certain deductive systems, depending on the meanings assigned to the derivation rules and the conditional symbol. Although they can be written in a symbolic form, for example, within the propositional calculus. In some cases, a picture alone may be sufficient to prove a theorem, because theorems lie at the core of mathematics, they are also central to its aesthetics. Theorems are often described as being trivial, or difficult, or deep and these subjective judgments vary not only from person to person, but also with time, for example, as a proof is simplified or better understood, a theorem that was once difficult may become trivial. On the other hand, a theorem may be simply stated. Fermats Last Theorem is a particularly well-known example of such a theorem, logically, many theorems are of the form of an indicative conditional, if A, then B. Such a theorem does not assert B, only that B is a consequence of A. In this case A is called the hypothesis of the theorem and B the conclusion. The theorem If n is an natural number then n/2 is a natural number is a typical example in which the hypothesis is n is an even natural number. To be proved, a theorem must be expressible as a precise, nevertheless, theorems are usually expressed in natural language rather than in a completely symbolic form, with the intention that the reader can produce a formal statement from the informal one. It is common in mathematics to choose a number of hypotheses within a given language and these hypotheses form the foundational basis of the theory and are called axioms or postulates. The field of known as proof theory studies formal languages, axioms. Some theorems are trivial, in the sense that they follow from definitions, axioms, a theorem might be simple to state and yet be deep

6.
Topological vector space
–
In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. As the name suggests the space blends a topological structure with the concept of a vector space. Hilbert spaces and Banach spaces are well-known examples, unless stated otherwise, the underlying field of a topological vector space is assumed to be either the complex numbers C or the real numbers R. Some authors require the topology on X to be T1, it follows that the space is Hausdorff. The topological and linear algebraic structures can be tied together even more closely with additional assumptions, the category of topological vector spaces over a given topological field K is commonly denoted TVSK or TVectK. The objects are the vector spaces over K and the morphisms are the continuous K-linear maps from one object to another. Every normed vector space has a topological structure, the norm induces a metric. This is a vector space because, The vector addition +, V × V → V is jointly continuous with respect to this topology. This follows directly from the triangle inequality obeyed by the norm, the scalar multiplication ·, K × V → V, where K is the underlying scalar field of V, is jointly continuous. This follows from the inequality and homogeneity of the norm. Therefore, all Banach spaces and Hilbert spaces are examples of vector spaces. There are topological spaces whose topology is not induced by a norm. These are all examples of Montel spaces, an infinite-dimensional Montel space is never normable. A topological field is a vector space over each of its subfields. A cartesian product of a family of vector spaces, when endowed with the product topology, is a topological vector space. For instance, the set X of all functions f, R → R, with this topology, X becomes a topological vector space, called the space of pointwise convergence. The reason for this name is the following, if is a sequence of elements in X, then fn has limit f in X if and only if fn has limit f for every real number x. This space is complete, but not normable, indeed, every neighborhood of 0 in the topology contains lines

7.
Boundary (topology)
–
In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points which can be approached both from S and from the outside of S. More precisely, it is the set of points in the closure of S, an element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set, notations used for boundary of a set S include bd, fr, and ∂S. Some authors use the term instead of boundary in an attempt to avoid confusion with the concept of boundary used in algebraic topology. However, frontier sometimes refers to a different set, which is the set of points which are not actually in the set. A connected component of the boundary of S is called a component of S. If the set consists of points only, then the set has only a boundary. There are several definitions to the boundary of a subset S of a topological space X. The intersection of the closure of S with the closure of its complement, the set of points p of X such that every neighborhood of p contains at least one point of S and at least one point not of S. Consider the real line R with the usual topology, one has ∂ = ∂ = ∂ = ∂∅ = ∅ ∂Q = R ∂ = These last two examples illustrate the fact that the boundary of a dense set with empty interior is its closure. In the space of rational numbers with the topology, the boundary of. The boundary of a set is a topological notion and may change if one changes the topology, for example, given the usual topology on R2, the boundary of a closed disk Ω = is the disks surrounding circle, ∂Ω =. If the disk is viewed as a set in R3 with its own usual topology, i. e. Ω =, then the boundary of the disk is the disk itself, ∂Ω = Ω. If the disk is viewed as its own space, then the boundary of the disk is empty. The boundary of a set is closed, the boundary of the interior of a set as well as the boundary of the closure of a set are both contained in the boundary of the set. A set is the boundary of some open set if and only if it is closed, the boundary of a set is the boundary of the complement of the set, ∂S = ∂. The interior of the boundary of a set is the empty set. Hence, p is a point of a set if and only if every neighborhood of p contains at least one point in the set