1.
Logic
–
Logic, originally meaning the word or what is spoken, is generally held to consist of the systematic study of the form of arguments. A valid argument is one where there is a relation of logical support between the assumptions of the argument and its conclusion. Historically, logic has been studied in philosophy and mathematics, and recently logic has been studied in science, linguistics, psychology. The concept of form is central to logic. The validity of an argument is determined by its logical form, traditional Aristotelian syllogistic logic and modern symbolic logic are examples of formal logic. Informal logic is the study of natural language arguments, the study of fallacies is an important branch of informal logic. Since much informal argument is not strictly speaking deductive, on some conceptions of logic, formal logic is the study of inference with purely formal content. An inference possesses a purely formal content if it can be expressed as an application of a wholly abstract rule, that is. The works of Aristotle contain the earliest known study of logic. Modern formal logic follows and expands on Aristotle, in many definitions of logic, logical inference and inference with purely formal content are the same. This does not render the notion of informal logic vacuous, because no formal logic captures all of the nuances of natural language, Symbolic logic is the study of symbolic abstractions that capture the formal features of logical inference. Symbolic logic is divided into two main branches, propositional logic and predicate logic. Mathematical logic is an extension of logic into other areas, in particular to the study of model theory, proof theory, set theory. Logic is generally considered formal when it analyzes and represents the form of any valid argument type, the form of an argument is displayed by representing its sentences in the formal grammar and symbolism of a logical language to make its content usable in formal inference. Simply put, formalising simply means translating English sentences into the language of logic and this is called showing the logical form of the argument. It is necessary because indicative sentences of ordinary language show a variety of form. Second, certain parts of the sentence must be replaced with schematic letters, thus, for example, the expression all Ps are Qs shows the logical form common to the sentences all men are mortals, all cats are carnivores, all Greeks are philosophers, and so on. The schema can further be condensed into the formula A, where the letter A indicates the judgement all - are -, the importance of form was recognised from ancient times

2.
History of logic
–
The history of logic deals with the study of the development of the science of valid inference. Formal logics developed in ancient times in China, India, Greek methods, particularly Aristotelian logic as found in the Organon, found wide application and acceptance in Western science and mathematics for millennia. The Stoics, especially Chrysippus, began the development of predicate logic, christian and Islamic philosophers such as Boethius and William of Ockham further developed Aristotles logic in the Middle Ages, reaching a high point in the mid-fourteenth century. The period between the fourteenth century and the beginning of the century saw largely decline and neglect. Empirical methods ruled the day, as evidenced by Sir Francis Bacons Novum Organon of 1620, valid reasoning has been employed in all periods of human history. However, logic studies the principles of reasoning, inference. It is probable that the idea of demonstrating a conclusion first arose in connection with geometry, the ancient Egyptians discovered geometry, including the formula for the volume of a truncated pyramid. Ancient Babylon was also skilled in mathematics, while the ancient Egyptians empirically discovered some truths of geometry, the great achievement of the ancient Greeks was to replace empirical methods by demonstrative proof. Both Thales and Pythagoras of the Pre-Socratic philosophers seem aware of geometrys methods, fragments of early proofs are preserved in the works of Plato and Aristotle, and the idea of a deductive system was probably known in the Pythagorean school and the Platonic Academy. The proofs of Euclid of Alexandria are a paradigm of Greek geometry, the three basic principles of geometry are as follows, Certain propositions must be accepted as true without demonstration, such a proposition is known as an axiom of geometry. Every proposition that is not an axiom of geometry must be demonstrated as following from the axioms of geometry, the proof must be formal, that is, the derivation of the proposition must be independent of the particular subject matter in question. Further evidence that early Greek thinkers were concerned with the principles of reasoning is found in the fragment called dissoi logoi and this is part of a protracted debate about truth and falsity. Thales was said to have had a sacrifice in celebration of discovering Thales Theorem just as Pythagoras had the Pythagorean Theorem, Indian and Babylonian mathematicians knew his theorem for special cases before he proved it. It is believed that Thales learned that an angle inscribed in a semicircle is a right angle during his travels to Babylon, before 520 BC, on one of his visits to Egypt or Greece, Pythagoras might have met the c.54 years older Thales. The systematic study of proof seems to have begun with the school of Pythagoras in the sixth century BC. Indeed, the Pythagoreans, believing all was number, are the first philosophers to emphasize rather than matter. He is known for his obscure sayings and this logos holds always but humans always prove unable to understand it, both before hearing it and when they have first heard it. But other people fail to notice what they do when awake, in contrast to Heraclitus, Parmenides held that all is one and nothing changes

3.
Metamathematics
–
Metamathematics is the study of mathematics itself using mathematical methods. This study produces metatheories, which are mathematical theories about other mathematical theories, emphasis on metamathematics owes itself to David Hilberts attempt to secure the foundations of mathematics in the early part of the 20th Century. Metamathematics provides a mathematical technique for investigating a great variety of foundation problems for mathematics. An important feature of metamathematics is its emphasis on differentiating between reasoning from inside a system and from outside a system, an informal illustration of this is categorizing the proposition 2+2=4 as belonging to mathematics while categorizing the proposition 2+2=4 is valid as belonging to metamathematics. Something similar can be said around the well-known Russells paradox, Metamathematics was intimately connected to mathematical logic, so that the early histories of the two fields, during the late 19th and early 20th centuries, largely overlap. More recently, mathematical logic has often included the study of new pure mathematics, such as set theory, recursion theory and pure model theory, serious metamathematical reflection began with the work of Gottlob Frege, especially his Begriffsschrift. David Hilbert was the first to invoke the term metamathematics with regularity, in his hands, it meant something akin to contemporary proof theory, in which finitary methods are used to study various axiomatized mathematical theorems. Today, metalogic and metamathematics are largely synonymous with each other, the discovery of hyperbolic geometry had important philosophical consequences for Metamathematics. Before its discovery there was just one geometry and mathematics, the idea that another geometry existed was considered improbable, the uproar of the Boeotians came and went, and gave an impetus to metamathematics and great improvements in mathematical rigour, analytical philosophy and logic. Begriffsschrift is a book on logic by Gottlob Frege, published in 1879, Begriffsschrift is usually translated as concept writing or concept notation, the full title of the book identifies it as a formula language, modeled on that of arithmetic, of pure thought. Freges motivation for developing his formal approach to logic resembled Leibnizs motivation for his calculus ratiocinator, Frege went on to employ his logical calculus in his research on the foundations of mathematics, carried out over the next quarter century. As such, this project is of great importance in the history of mathematics and philosophy. One of the inspirations and motivations for PM was the earlier work of Gottlob Frege on logic. PM sought to avoid this problem by ruling out the creation of arbitrary sets. This was achieved by replacing the notion of a set with notion of a hierarchy of sets of different types. Contemporary mathematics, however, avoids paradoxes such as Russells in less unwieldy ways, gödels completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic. It makes a link between model theory that deals with what is true in different models, and proof theory that studies what can be formally proven in particular formal systems. More formally, the theorem says that if a formula is logically valid then there is a finite deduction of the formula