1.
International System of Units
–
The International System of Units is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, the system also establishes a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system was published in 1960 as the result of an initiative began in 1948. It is based on the system of units rather than any variant of the centimetre-gram-second system. The motivation for the development of the SI was the diversity of units that had sprung up within the CGS systems, the International System of Units has been adopted by most developed countries, however, the adoption has not been universal in all English-speaking countries. The metric system was first implemented during the French Revolution with just the metre and kilogram as standards of length, in the 1830s Carl Friedrich Gauss laid the foundations for a coherent system based on length, mass, and time. In the 1860s a group working under the auspices of the British Association for the Advancement of Science formulated the requirement for a coherent system of units with base units and derived units. Meanwhile, in 1875, the Treaty of the Metre passed responsibility for verification of the kilogram, in 1921, the Treaty was extended to include all physical quantities including electrical units originally defined in 1893. The units associated with these quantities were the metre, kilogram, second, ampere, kelvin, in 1971, a seventh base quantity, amount of substance represented by the mole, was added to the definition of SI. On 11 July 1792, the proposed the names metre, are, litre and grave for the units of length, area, capacity. The committee also proposed that multiples and submultiples of these units were to be denoted by decimal-based prefixes such as centi for a hundredth, on 10 December 1799, the law by which the metric system was to be definitively adopted in France was passed. Prior to this, the strength of the magnetic field had only been described in relative terms. The technique used by Gauss was to equate the torque induced on a magnet of known mass by the earth’s magnetic field with the torque induced on an equivalent system under gravity. The resultant calculations enabled him to assign dimensions based on mass, length, a French-inspired initiative for international cooperation in metrology led to the signing in 1875 of the Metre Convention. Initially the convention only covered standards for the metre and the kilogram, one of each was selected at random to become the International prototype metre and International prototype kilogram that replaced the mètre des Archives and kilogramme des Archives respectively. Each member state was entitled to one of each of the prototypes to serve as the national prototype for that country. Initially its prime purpose was a periodic recalibration of national prototype metres. The official language of the Metre Convention is French and the version of all official documents published by or on behalf of the CGPM is the French-language version

2.
SI base unit
–
The International System of Units defines seven units of measure as a basic set from which all other SI units can be derived. The SI base units form a set of mutually independent dimensions as required by dimensional analysis commonly employed in science, thus, the kelvin, named after Lord Kelvin, has the symbol K and the ampere, named after André-Marie Ampère, has the symbol A. Many other units, such as the litre, are not part of the SI. The definitions of the units have been modified several times since the Metre Convention in 1875. Since the redefinition of the metre in 1960, the kilogram is the unit that is directly defined in terms of a physical artifact. However, the mole, the ampere, and the candela are linked through their definitions to the mass of the platinum–iridium cylinder stored in a vault near Paris. It has long been an objective in metrology to define the kilogram in terms of a fundamental constant, two possibilities have attracted particular attention, the Planck constant and the Avogadro constant. The 23rd CGPM decided to postpone any formal change until the next General Conference in 2011

3.
Ampere
–
The ampere, often shortened to amp, is a unit of electric current. In the International System of Units the ampere is one of the seven SI base units and it is named after André-Marie Ampère, French mathematician and physicist, considered the father of electrodynamics. SI defines the ampere in terms of base units by measuring the electromagnetic force between electrical conductors carrying electric current. The ampere was then defined as one coulomb of charge per second, in SI, the unit of charge, the coulomb, is defined as the charge carried by one ampere during one second. In the future, the SI definition may shift back to charge as the base unit, ampères force law states that there is an attractive or repulsive force between two parallel wires carrying an electric current. This force is used in the definition of the ampere. The SI unit of charge, the coulomb, is the quantity of electricity carried in 1 second by a current of 1 ampere, conversely, a current of one ampere is one coulomb of charge going past a given point per second,1 A =1 C s. In general, charge Q is determined by steady current I flowing for a time t as Q = It, constant, instantaneous and average current are expressed in amperes and the charge accumulated, or passed through a circuit over a period of time is expressed in coulombs. The relation of the ampere to the coulomb is the same as that of the watt to the joule, the ampere was originally defined as one tenth of the unit of electric current in the centimetre–gram–second system of units. That unit, now known as the abampere, was defined as the amount of current that generates a force of two dynes per centimetre of length between two wires one centimetre apart. The size of the unit was chosen so that the derived from it in the MKSA system would be conveniently sized. The international ampere was a realization of the ampere, defined as the current that would deposit 0.001118 grams of silver per second from a silver nitrate solution. Later, more accurate measurements revealed that this current is 0.99985 A, at present, techniques to establish the realization of an ampere have a relative uncertainty of approximately a few parts in 107, and involve realizations of the watt, the ohm and the volt. Rather than a definition in terms of the force between two current-carrying wires, it has proposed that the ampere should be defined in terms of the rate of flow of elementary charges. Since a coulomb is equal to 6. 2415093×1018 elementary charges. The proposed change would define 1 A as being the current in the direction of flow of a number of elementary charges per second. In 2005, the International Committee for Weights and Measures agreed to study the proposed change, the new definition was discussed at the 25th General Conference on Weights and Measures in 2014 but for the time being was not adopted. The current drawn by typical constant-voltage energy distribution systems is usually dictated by the power consumed by the system, for this reason the examples given below are grouped by voltage level

4.
Candela
–
The candela is the SI base unit of luminous intensity, that is, luminous power per unit solid angle emitted by a point light source in a particular direction. A common candle emits light with an intensity of roughly one candela. If emission in some directions is blocked by an opaque barrier, the word candela means candle in Latin. Like most other SI base units, the candela has an operational definition—it is defined by a description of a process that will produce one candela of luminous intensity. The definition describes how to produce a source that emits one candela. Such a source could then be used to calibrate instruments designed to measure luminous intensity, the candela is sometimes still called by the old name candle, such as in foot-candle and the modern definition of candlepower. The frequency chosen is in the spectrum near green, corresponding to a wavelength of about 555 nanometres. The human eye is most sensitive to frequency, when adapted for bright conditions. At other frequencies, more radiant intensity is required to achieve the same luminous intensity, if more than one wavelength is present, one must sum or integrate over the spectrum of wavelengths present to get the total luminous intensity. A common candle emits light with roughly 1 cd luminous intensity. A25 W compact fluorescent light bulb puts out around 1700 lumens, if light is radiated equally in all directions. Focused into a 20° beam, the light bulb would have an intensity of around 18,000 cd. The luminous intensity of light-emitting diodes is measured in millicandelas, or thousandths of a candela, indicator LEDs are typically in the 50 mcd range, ultra-bright LEDs can reach 15,000 mcd, or higher. Prior to 1948, various standards for luminous intensity were in use in a number of countries and these were typically based on the brightness of the flame from a standard candle of defined composition, or the brightness of an incandescent filament of specific design. One of the best-known of these was the English standard of candlepower, one candlepower was the light produced by a pure spermaceti candle weighing one sixth of a pound and burning at a rate of 120 grains per hour. Germany, Austria and Scandinavia used the Hefnerkerze, a based on the output of a Hefner lamp. It became clear that a unit was needed. Jules Violle had proposed a standard based on the emitted by 1 cm2 of platinum at its melting point

5.
Kelvin
–
The kelvin is a unit of measure for temperature based upon an absolute scale. It is one of the seven units in the International System of Units and is assigned the unit symbol K. The kelvin is defined as the fraction 1⁄273.16 of the temperature of the triple point of water. In other words, it is defined such that the point of water is exactly 273.16 K. The Kelvin scale is named after the Belfast-born, Glasgow University engineer and physicist William Lord Kelvin, unlike the degree Fahrenheit and degree Celsius, the kelvin is not referred to or typeset as a degree. The kelvin is the unit of temperature measurement in the physical sciences, but is often used in conjunction with the Celsius degree. The definition implies that absolute zero is equivalent to −273.15 °C, Kelvin calculated that absolute zero was equivalent to −273 °C on the air thermometers of the time. This absolute scale is known today as the Kelvin thermodynamic temperature scale, when spelled out or spoken, the unit is pluralised using the same grammatical rules as for other SI units such as the volt or ohm. When reference is made to the Kelvin scale, the word kelvin—which is normally a noun—functions adjectivally to modify the noun scale and is capitalized, as with most other SI unit symbols there is a space between the numeric value and the kelvin symbol. Before the 13th CGPM in 1967–1968, the unit kelvin was called a degree and it was distinguished from the other scales with either the adjective suffix Kelvin or with absolute and its symbol was °K. The latter term, which was the official name from 1948 until 1954, was ambiguous since it could also be interpreted as referring to the Rankine scale. Before the 13th CGPM, the form was degrees absolute. The 13th CGPM changed the name to simply kelvin. Its measured value was 7002273160280000000♠0.01028 °C with an uncertainty of 60 µK, the use of SI prefixed forms of the degree Celsius to express a temperature interval has not been widely adopted. In 2005 the CIPM embarked on a program to redefine the kelvin using a more experimentally rigorous methodology, the current definition as of 2016 is unsatisfactory for temperatures below 20 K and above 7003130000000000000♠1300 K. In particular, the committee proposed redefining the kelvin such that Boltzmanns constant takes the exact value 6977138065049999999♠1. 3806505×10−23 J/K, from a scientific point of view, this will link temperature to the rest of SI and result in a stable definition that is independent of any particular substance. From a practical point of view, the redefinition will pass unnoticed, the kelvin is often used in the measure of the colour temperature of light sources. Colour temperature is based upon the principle that a black body radiator emits light whose colour depends on the temperature of the radiator, black bodies with temperatures below about 7003400000000000000♠4000 K appear reddish, whereas those above about 7003750000000000000♠7500 K appear bluish

6.
Kilogram
–
The kilogram or kilogramme is the base unit of mass in the International System of Units and is defined as being equal to the mass of the International Prototype of the Kilogram. The avoirdupois pound, used in both the imperial and US customary systems, is defined as exactly 0.45359237 kg, making one kilogram approximately equal to 2.2046 avoirdupois pounds. Other traditional units of weight and mass around the world are also defined in terms of the kilogram, the gram, 1/1000 of a kilogram, was provisionally defined in 1795 as the mass of one cubic centimeter of water at the melting point of ice. The final kilogram, manufactured as a prototype in 1799 and from which the IPK was derived in 1875, had an equal to the mass of 1 dm3 of water at its maximum density. The kilogram is the only SI base unit with an SI prefix as part of its name and it is also the only SI unit that is still directly defined by an artifact rather than a fundamental physical property that can be reproduced in different laboratories. Three other base units and 17 derived units in the SI system are defined relative to the kilogram, only 8 other units do not require the kilogram in their definition, temperature, time and frequency, length, and angle. At its 2011 meeting, the CGPM agreed in principle that the kilogram should be redefined in terms of the Planck constant, the decision was originally deferred until 2014, in 2014 it was deferred again until the next meeting. There are currently several different proposals for the redefinition, these are described in the Proposed Future Definitions section below, the International Prototype Kilogram is rarely used or handled. In the decree of 1795, the term gramme thus replaced gravet, the French spelling was adopted in the United Kingdom when the word was used for the first time in English in 1797, with the spelling kilogram being adopted in the United States. In the United Kingdom both spellings are used, with kilogram having become by far the more common, UK law regulating the units to be used when trading by weight or measure does not prevent the use of either spelling. In the 19th century the French word kilo, a shortening of kilogramme, was imported into the English language where it has used to mean both kilogram and kilometer. In 1935 this was adopted by the IEC as the Giorgi system, now known as MKS system. In 1948 the CGPM commissioned the CIPM to make recommendations for a practical system of units of measurement. This led to the launch of SI in 1960 and the subsequent publication of the SI Brochure, the kilogram is a unit of mass, a property which corresponds to the common perception of how heavy an object is. Mass is a property, that is, it is related to the tendency of an object at rest to remain at rest, or if in motion to remain in motion at a constant velocity. Accordingly, for astronauts in microgravity, no effort is required to hold objects off the cabin floor, they are weightless. However, since objects in microgravity still retain their mass and inertia, the ratio of the force of gravity on the two objects, measured by the scale, is equal to the ratio of their masses. On April 7,1795, the gram was decreed in France to be the weight of a volume of pure water equal to the cube of the hundredth part of the metre

7.
Metre
–
The metre or meter, is the base unit of length in the International System of Units. The metre is defined as the length of the path travelled by light in a vacuum in 1/299792458 seconds, the metre was originally defined in 1793 as one ten-millionth of the distance from the equator to the North Pole. In 1799, it was redefined in terms of a metre bar. In 1960, the metre was redefined in terms of a number of wavelengths of a certain emission line of krypton-86. In 1983, the current definition was adopted, the imperial inch is defined as 0.0254 metres. One metre is about 3 3⁄8 inches longer than a yard, Metre is the standard spelling of the metric unit for length in nearly all English-speaking nations except the United States and the Philippines, which use meter. Measuring devices are spelled -meter in all variants of English, the suffix -meter has the same Greek origin as the unit of length. This range of uses is found in Latin, French, English. Thus calls for measurement and moderation. In 1668 the English cleric and philosopher John Wilkins proposed in an essay a decimal-based unit of length, as a result of the French Revolution, the French Academy of Sciences charged a commission with determining a single scale for all measures. In 1668, Wilkins proposed using Christopher Wrens suggestion of defining the metre using a pendulum with a length which produced a half-period of one second, christiaan Huygens had observed that length to be 38 Rijnland inches or 39.26 English inches. This is the equivalent of what is now known to be 997 mm, no official action was taken regarding this suggestion. In the 18th century, there were two approaches to the definition of the unit of length. One favoured Wilkins approach, to define the metre in terms of the length of a pendulum which produced a half-period of one second. The other approach was to define the metre as one ten-millionth of the length of a quadrant along the Earths meridian, that is, the distance from the Equator to the North Pole. This means that the quadrant would have defined as exactly 10000000 metres at that time. To establish a universally accepted foundation for the definition of the metre, more measurements of this meridian were needed. This portion of the meridian, assumed to be the length as the Paris meridian, was to serve as the basis for the length of the half meridian connecting the North Pole with the Equator

8.
Mole (unit)
–
The mole is the unit of measurement in the International System of Units for amount of substance. This number is expressed by the Avogadro constant, which has a value of 6. 022140857×1023 mol−1, the mole is one of the base units of the SI, and has the unit symbol mol. The mole is used in chemistry as a convenient way to express amounts of reactants and products of chemical reactions. For example, the chemical equation 2 H2 + O2 →2 H2O implies that 2 moles of dihydrogen and 1 mole of dioxygen react to form 2 moles of water. The mole may also be used to express the number of atoms, ions, the concentration of a solution is commonly expressed by its molarity, defined as the number of moles of the dissolved substance per litre of solution. For example, the relative molecular mass of natural water is about 18.015, therefore. The term gram-molecule was formerly used for essentially the same concept, the term gram-atom has been used for a related but distinct concept, namely a quantity of a substance that contains Avogadros number of atoms, whether isolated or combined in molecules. Thus, for example,1 mole of MgBr2 is 1 gram-molecule of MgBr2 but 3 gram-atoms of MgBr2, in honor of the unit, some chemists celebrate October 23, which is a reference to the 1023 scale of the Avogadro constant, as Mole Day. Some also do the same for February 6 and June 2, thus, by definition, one mole of pure 12C has a mass of exactly 12 g. It also follows from the definition that X moles of any substance will contain the number of molecules as X moles of any other substance. The mass per mole of a substance is called its molar mass, the number of elementary entities in a sample of a substance is technically called its amount. Therefore, the mole is a convenient unit for that physical quantity, one can determine the chemical amount of a known substance, in moles, by dividing the samples mass by the substances molar mass. Other methods include the use of the volume or the measurement of electric charge. The mass of one mole of a substance depends not only on its molecular formula, since the definition of the gram is not mathematically tied to that of the atomic mass unit, the number NA of molecules in a mole must be determined experimentally. The value adopted by CODATA in 2010 is NA =6. 02214129×1023 ±0. 00000027×1023, in 2011 the measurement was refined to 6. 02214078×1023 ±0. 00000018×1023. The number of moles of a sample is the sample mass divided by the mass of the material. The history of the mole is intertwined with that of mass, atomic mass unit, Avogadros number. The first table of atomic mass was published by John Dalton in 1805

9.
Second
–
The second is the base unit of time in the International System of Units. It is qualitatively defined as the division of the hour by sixty. SI definition of second is the duration of 9192631770 periods of the corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom. Seconds may be measured using a mechanical, electrical or an atomic clock, SI prefixes are combined with the word second to denote subdivisions of the second, e. g. the millisecond, the microsecond, and the nanosecond. Though SI prefixes may also be used to form multiples of the such as kilosecond. The second is also the unit of time in other systems of measurement, the centimetre–gram–second, metre–kilogram–second, metre–tonne–second. Absolute zero implies no movement, and therefore zero external radiation effects, the second thus defined is consistent with the ephemeris second, which was based on astronomical measurements. The realization of the second is described briefly in a special publication from the National Institute of Standards and Technology. 1 international second is equal to, 1⁄60 minute 1⁄3,600 hour 1⁄86,400 day 1⁄31,557,600 Julian year 1⁄, more generally, = 1⁄, the Hellenistic astronomers Hipparchus and Ptolemy subdivided the day into sixty parts. They also used an hour, simple fractions of an hour. No sexagesimal unit of the day was used as an independent unit of time. The modern second is subdivided using decimals - although the third remains in some languages. The earliest clocks to display seconds appeared during the last half of the 16th century, the second became accurately measurable with the development of mechanical clocks keeping mean time, as opposed to the apparent time displayed by sundials. The earliest spring-driven timepiece with a hand which marked seconds is an unsigned clock depicting Orpheus in the Fremersdorf collection. During the 3rd quarter of the 16th century, Taqi al-Din built a clock with marks every 1/5 minute, in 1579, Jost Bürgi built a clock for William of Hesse that marked seconds. In 1581, Tycho Brahe redesigned clocks that displayed minutes at his observatory so they also displayed seconds, however, they were not yet accurate enough for seconds. In 1587, Tycho complained that his four clocks disagreed by plus or minus four seconds, in 1670, London clockmaker William Clement added this seconds pendulum to the original pendulum clock of Christiaan Huygens. From 1670 to 1680, Clement made many improvements to his clock and this clock used an anchor escapement mechanism with a seconds pendulum to display seconds in a small subdial

10.
SI derived unit
–
The International System of Units specifies a set of seven base units from which all other SI units of measurement are derived. Each of these units is either dimensionless or can be expressed as a product of powers of one or more of the base units. For example, the SI derived unit of area is the metre. The degree Celsius has an unclear status, and is arguably an exception to this rule. The names of SI units are written in lowercase, the symbols for units named after persons, however, are always written with an uppercase initial letter. In addition to the two dimensionless derived units radian and steradian,20 other derived units have special names, some other units such as the hour, litre, tonne, bar and electronvolt are not SI units, but are widely used in conjunction with SI units. Until 1995, the SI classified the radian and the steradian as supplementary units, but this designation was abandoned, International System of Quantities International System of Units International Vocabulary of Metrology Metric prefix Metric system Non-SI units mentioned in the SI Planck units SI base unit I. Mills, Tomislav Cvitas, Klaus Homann, Nikola Kallay, IUPAC, Quantities, Units and Symbols in Physical Chemistry. CS1 maint, Multiple names, authors list