Isotoxal figure
In geometry, a polytope, or a tiling, is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation and/or reflection that will move one edge to the other, while leaving the region occupied by the object unchanged; the term isotoxal is derived from the Greek τοξον meaning arc. An isotoxal polygon is an equilateral polygon; the duals of isotoxal polygons are isogonal polygons. In general, an isotoxal 2n-gon will have Dn dihedral symmetry. A rhombus is an isotoxal polygon with D2 symmetry. All regular polygons are isotoxal, having double the minimum symmetry order: a regular n-gon has Dn dihedral symmetry. A regular 2n-gon is an isotoxal polygon and can be marked with alternately colored vertices, removing the line of reflection through the mid-edges. Regular polyhedra are isohedral and isotoxal. Quasiregular polyhedra are not isohedral. Not every polyhedron or 2-dimensional tessellation constructed from regular polygons is isotoxal.
For instance, the truncated icosahedron has two types of edges: hexagon-hexagon and hexagon-pentagon, it is not possible for a symmetry of the solid to move a hexagon-hexagon edge onto a hexagon-pentagon edge. An isotoxal polyhedron has the same dihedral angle for all edges. There are nine convex isotoxal polyhedra formed from the Platonic solids, 8 formed by the Kepler–Poinsot polyhedra, six more as quasiregular star polyhedra and their duals. There are at least 5 polygonal tilings of the Euclidean plane that are isotoxal, infinitely many isotoxal polygonal tilings of the hyperbolic plane, including the Wythoff constructions from the regular hyperbolic tilings, non-right groups. Table of polyhedron dihedral angles Vertex-transitive Face-transitive Cell-transitive Peter R. Cromwell, Cambridge University Press 1997, ISBN 0-521-55432-2, p. 371 Transitivity Grünbaum, Branko. C.. Tilings and Patterns. New York: W. H. Freeman. ISBN 0-7167-1193-1. CS1 maint: Multiple names: authors list Coxeter, Harold Scott MacDonald.
"Uniform polyhedra", Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 246: 401–450, doi:10.1098/rsta.1954.0003, ISSN 0080-4614, JSTOR 91532, MR 0062446
Kaleidoscope
A kaleidoscope is an optical instrument with two or more reflecting surfaces tilted to each other in an angle, so that one or more objects on one end of the mirrors are seen as a regular symmetrical pattern when viewed from the other end, due to repeated reflection. The reflectors are enclosed in a tube containing on one end a cell with loose, colored pieces of glass or other transparent materials to be reflected into the viewed pattern. Rotation of the cell causes motion of the materials, resulting in an ever-changing view being presented. Coined by its Scottish inventor David Brewster, "kaleidoscope" is derived from the Ancient Greek word καλός, "beautiful, beauty", εἶδος, "that, seen: form, shape" and σκοπέω, "to look to, to examine", hence "observation of beautiful forms." It was first published in the patent, granted on July 10, 1817. Multiple reflection by two or more reflecting surfaces has been known since antiquity and was described as such by Giambattista della Porta in his Magia Naturalis.
In 1646 Athanasius Kircher described an experiment with a construction of two mirrors, which could be opened and closed like a book and positioned in various angles, showing regular polygon figures consisting of reflected aliquot sectors of 360°. Mr. Bradley's New Improvements in Planting and Gardening described a similar construction to be placed on geometrical drawings to show an image with multiplied reflection. However, an optimal configuration that produces the full effects of the kaleidoscope was not recorded before 1815. In 1814 Sir David Brewster conducted experiments on light polarization by successive reflections between plates of glass and first noted "the circular arrangement of the images of a candle round a center, the multiplication of the sectors formed by the extremities of the plates of glass", he forgot about it, but noticed a more impressive version of the effect during further experiments in February 1815. A while he was impressed by the multiplied reflection of a bit of cement, pressed through at the end of a triangular glass trough, which appeared more regular and perfectly symmetrical in comparison to the reflected objects, situated further away from the reflecting plates in earlier experiments.
This triggered more experiments to find the conditions for the most beautiful and symmetrically perfect conditions. An early version had pieces of colored glass and other irregular objects fixed permanently and was admired by some Members of the Royal Society of Edinburgh, including Sir George Mackenzie who predicted its popularity. A version followed in which some of the objects and pieces of glass could move when the tube was rotated; the last step, regarded as most important by Brewster, was to place the reflecting panes in a draw tube with a concave lens to distinctly introduce surrounding objects into the reflected pattern. Brewster thought his instrument to be of great value in "all the ornamental arts" as a device that creates an "infinity of patterns". Artists could delineate the produced figures of the kaleidoscope by means of the solar microscope, magic lantern or camera lucida. Brewster believed it would at the same time become a popular instrument "for the purposes of rational amusement".
He decided to apply for a patent. British patent no. 4136 "for a new Optical Instrument called "The Kaleidoscope" for exhibiting and creating beautiful Forms and Patterns of great use in all the ornamental Arts" was granted in July 1817. The manufacturer engaged to produce the product had shown one of the patent instruments to some of the London opticians to see if he could get orders from them. Soon the instrument was copied and marketed before the manufacturer had prepared any number of kaleidoscopes for sale. An estimated two hundred thousand kaleidoscopes sold in London and Paris in just three months. Brewster figured at most a thousand of these were authorized copies that were constructed while the majority of the others did not give a correct impression of his invention; because so few people had experienced a proper kaleidoscope or knew how to apply it to ornamental arts, he decided to publicize a treatise on the principles and the correct construction of the kaleidoscope. It was thought that the patent was reduced in a Court of Law since its principles were already known.
Brewster stated that the kaleidoscope was different because the particular positions of the object and of the eye, played a important role in producing the beautiful symmetrical forms. Brewster's opinion was shared including James Watt. Philip Carpenter tried to produce his own imitation of the kaleidoscope, but was not satisfied with the results, he decided to offer his services to Brewster as manufacturer. Brewster agreed and Carpenter's models were stamped "sole maker". Realizing that the company could not meet the level of demand, Brewster gained permission from Carpenter in 1818 for the device to be made by other manufacturers. In his 1819 Treatise on the Kaleidoscope Brewster listed more than a dozen manufacturers/sellers of patent kaleidoscopes. Carpenter's company would keep on selling kaleidoscopes for 60 years. H. M. Quackenbush Co. based in upstate New York in the United States was another authorized manufacturer. In 1987, kaleidoscope artist Thea Marshall, working with the Willamette Science and Technology Center, a science museum located in the Eugene, Oregon and constructed a 1,000 square foot traveling mathematics and science exhibition, "Kaleidoscopes: Reflections of Science and Art."
With funding from the National Science Foundation, circulated under the auspices of the Smithsonian Insti
Dual polyhedron
In geometry, any polyhedron is associated with a second dual figure, where the vertices of one correspond to the faces of the other and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all are geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron. Duality preserves the symmetries of a polyhedron. Therefore, for many classes of polyhedra defined by their symmetries, the duals belong to a symmetric class. Thus, the regular polyhedra – the Platonic solids and Kepler–Poinsot polyhedra – form dual pairs, where the regular tetrahedron is self-dual; the dual of an isogonal polyhedron, having equivalent vertices, is one, isohedral, having equivalent faces. The dual of an isotoxal polyhedron is isotoxal. Duality is related to reciprocity or polarity, a geometric transformation that, when applied to a convex polyhedron, realizes the dual polyhedron as another convex polyhedron.
There are many kinds of duality. The kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality; the duality of polyhedra is defined in terms of polar reciprocation about a concentric sphere. Here, each vertex is associated with a face plane so that the ray from the center to the vertex is perpendicular to the plane, the product of the distances from the center to each is equal to the square of the radius. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2; the vertices of the dual are the poles reciprocal to the face planes of the original, the faces of the dual lie in the polars reciprocal to the vertices of the original. Any two adjacent vertices define an edge, these will reciprocate to two adjacent faces which intersect to define an edge of the dual; this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, r 1 and r 2 the distances from its centre to the pole and its polar, then: r 1.
R 2 = r 0 2 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, as in the Dorman Luke construction described below. However, it is possible to reciprocate a polyhedron about any sphere, the resulting form of the dual will depend on the size and position of the sphere; the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point, this is taken to be the centroid. Failing that, a circumscribed sphere, inscribed sphere, or midsphere is used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, the corresponding element of its dual will go to infinity. Since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required'plane at infinity'; some theorists prefer to say that there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, in a manner suitable for making models.
The concept of duality here is related to the duality in projective geometry, where lines and edges are interchanged. Projective polarity works well enough for convex polyhedra, but for non-convex figures such as star polyhedra, when we seek to rigorously define this form of polyhedral duality in terms of projective polarity, various problems appear. Because of the definitional issues for geometric duality of non-convex polyhedra, Grünbaum argues that any proper definition of a non-convex polyhedron should include a notion of a dual polyhedron. Any convex polyhedron can be distorted into a canonical form, in which a unit midsphere exists tangent to every edge, such that the average position of the points of tangency is the center of the sphere; this form is unique up to congruences. If we reciprocate such a canonical polyhedron about its midsphere, the dual polyhedron will share the same edge-tangency points and so must be canonical, it is the canonical dual, the two together form a canonical dual pair.
When a pair of polyhedra cannot be obtained by reciprocation from each other, they may be called duals of each other as long as the vertices of one correspond to the faces of the other, the edges of one correspond to the edges of the other, in an incidence-preserving way. Such pairs of polyhedra are abstractly dual; the vertices and edges of a convex polyhedron form a graph, embedded on a topological sphere, the surface of the polyhedron. The same graph can be projected to form
Wythoff symbol
In geometry, the Wythoff symbol represents a Wythoff construction of a uniform polyhedron or plane tiling, from a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra. A Wythoff symbol consists of a vertical bar, it represents one uniform polyhedron or tiling, although the same tiling/polyhedron can have different Wythoff symbols from different symmetry generators. For example, the regular cube can be represented by 3 | 4 2 with Oh symmetry, 2 4 | 2 as a square prism with 2 colors and D4h symmetry, as well as 2 2 2 | with 3 colors and D 2 h symmetry. With a slight extension, Wythoff's symbol can be applied to all uniform polyhedra. However, the construction methods do not lead to all uniform tilings in Euclidean or hyperbolic space. In three dimensions, Wythoff's construction begins by choosing a generator point on the triangle. If the distance of this point from each of the sides is non-zero, the point must be chosen to be an equal distance from each edge.
A perpendicular line is dropped between the generator point and every face that it does not lie on. The three numbers in Wythoff's symbol, p, q and r, represent the corners of the Schwarz triangle used in the construction, which are π / p, π / q and π / r radians respectively; the triangle is represented with the same numbers, written. The vertical bar in the symbol specifies a categorical position of the generator point within the fundamental triangle according to the following: p | q r indicates that the generator lies on the corner p, p q | r indicates that the generator lies on the edge between p and q, p q r | indicates that the generator lies in the interior of the triangle. In this notation the mirrors are labeled by the reflection-order of the opposite vertex; the p, q, r values are listed before the bar. The one impossible symbol | p q r implies the generator point is on all mirrors, only possible if the triangle is degenerate, reduced to a point; this unused symbol is therefore arbitrarily reassigned to represent the case where all mirrors are active, but odd-numbered reflected images are ignored.
The resulting figure has rotational symmetry only. The generator point can either be off each mirror, activated or not; this distinction creates 8 possible forms, neglecting one where the generator point is on all the mirrors. The Wythoff symbol is functionally similar to the more general Coxeter-Dynkin diagram, in which each node represents a mirror and the arcs between them – marked with numbers – the angles between the mirrors. A node is circled. There are seven generator points with each set of p, q, r: There are three special cases: p q | – This is a mixture of p q r | and p q s |, containing only the faces shared by both. | p q r – Snub forms are given by this otherwise unused symbol. | p q r s – A unique snub form for U75 that isn't Wythoff-constructible. There are 4 symmetry classes of reflection on the sphere, three in the Euclidean plane. A few of the infinitely many such patterns in the hyperbolic plane are listed. Point groups: dihedral symmetry, p = 2, 3, 4 … tetrahedral symmetry octahedral symmetry icosahedral symmetry Euclidean groups: *442 symmetry: 45°-45°-90° triangle *632 symmetry: 30°-60°-90° triangle *333 symmetry: 60°-60°-60° triangleHyperbolic groups: *732 symmetry *832 symmetry *433 symmetry *443 symmetry *444 symmetry *542 symmetry *642 symmetry...
The above symmetry groups only include the integer solutions on the sphere. The list of Schwarz triangles includes rational numbers, determine the full set of solutions of nonconvex uniform polyhedra. In the tilings above, each triangle is a fundamental domain, colored by and odd reflections. Selected tilings created by the Wythoff con
Cuboctahedron
In geometry, a cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, 24 identical edges, each separating a triangle from a square; as such, it is a quasiregular polyhedron, i.e. an Archimedean solid, not only vertex-transitive but edge-transitive. It is the only radially equilateral convex polyhedron, its dual polyhedron is the rhombic dodecahedron. The cuboctahedron was known to Plato: Heron's Definitiones quotes Archimedes as saying that Plato knew of a solid made of 8 triangles and 6 squares. Heptaparallelohedron Fuller applied the name "Dymaxion" to this shape, used in an early version of the Dymaxion map, he called it the "Vector Equilibrium" because of its radial equilateral symmetry. He called a cuboctahedron consisting of rigid struts connected by flexible vertices a "jitterbug". With Oh symmetry, order 48, it is a rectified cube or rectified octahedron With Td symmetry, order 24, it is a cantellated tetrahedron or rhombitetratetrahedron.
With D3d symmetry, order 12, it is a triangular gyrobicupola. The area A and the volume V of the cuboctahedron of edge length a are: A = a 2 ≈ 9.464 1016 a 2 V = 5 3 2 a 3 ≈ 2.357 0226 a 3. The cuboctahedron has four special orthogonal projections, centered on a vertex, an edge, the two types of faces and square; the last two correspond to the B2 and A2 Coxeter planes. The skew projections show a hexagon passing through the center of the cuboctahedron; the cuboctahedron can be represented as a spherical tiling, projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not lengths. Straight lines on the sphere are projected as circular arcs on the plane; the Cartesian coordinates for the vertices of a cuboctahedron centered at the origin are: An alternate set of coordinates can be made in 4-space, as 12 permutations of: This construction exists as one of 16 orthant facets of the cantellated 16-cell. The cuboctahedron's 12 vertices can represent the root vectors of the simple Lie group A3.
With the addition of 6 vertices of the octahedron, these vertices represent the 18 root vectors of the simple Lie group B3. The cuboctahedron can be dissected into two triangular cupolas by a common hexagon passing through the center of the cuboctahedron. If these two triangular cupolas are twisted so triangles and squares line up, Johnson solid J27, the triangular orthobicupola, is created; the cuboctahedron can be dissected into 6 square pyramids and 8 tetrahedra meeting at a central point. This dissection is expressed in the alternated cubic honeycomb where pairs of square pyramids are combined into octahedra; the cuboctahedron is the unique convex polyhedron in which the long radius is the same as the edge length. This radial equilateral symmetry is a property of only a few polytopes, including the two-dimensional hexagon, the three-dimensional cuboctahedron, the four-dimensional 24-cell and 8-cell. Radially equilateral polytopes are those which can be constructed, with their long radii, from equilateral triangles which meet at the center of the polytope, each contributing two radii and an edge.
Therefore, all the interior elements which meet at the center of these polytopes have equilateral triangle inward faces, as in the dissection of the cuboctahedron into 6 square pyramids and 8 tetrahedra. Each of these radially equilateral polytopes occurs as cells of a characteristic space-filling tessellation: the tiling of regular hexagons, the rectified cubic honeycomb, the 24-cell honeycomb and the tesseractic honeycomb, respectively; each tessellation has a dual tessellation. The densest known regular sphere-packing in two and four dimensions uses the cell centers of one of these tessellations as sphere centers. A cuboctahedron has octahedral symmetry, its first stellation is the compound of a cube and its dual octahedron, with the vertices of the cuboctahedron located at the midpoints of the edges of either. A cuboctahedron can be obtained by taking an equatorial cross section of a four-dimensional 24-cell or 16-cell. A hexagon can be obtained by taking an equatorial cross section of a cuboctahedron.
The cuboctahedron is a rectified cube and a rectified octahedron. It is a cantellated tetrahedron. With this construction it is given the Wythoff symbol: 3 3 | 2. A skew cantellation of the tetrahedron produces a solid with faces parallel to those of the cuboctahedron, namely eight triangles of two sizes, six rectangles. While its edges are unequal, this solid remains vertex-uniform: the solid has the full tetrahedral symmet
Orbifold notation
In geometry, orbifold notation is a system, invented by William Thurston and popularized by the mathematician John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it describes the orbifold obtained by taking the quotient of Euclidean space by the group under consideration. Groups representable in this notation include the point groups on the sphere, the frieze groups and wallpaper groups of the Euclidean plane, their analogues on the hyperbolic plane; the following types of Euclidean transformation can occur in a group described by orbifold notation: reflection through a line translation by a vector rotation of finite order around a point infinite rotation around a line in 3-space glide-reflection, i.e. reflection followed by translation. All translations which occur are assumed to form a discrete subgroup of the group symmetries being described.
Each group is denoted in orbifold notation by a finite string made up from the following symbols: positive integers 1, 2, 3, … the infinity symbol, ∞ the asterisk, * the symbol o, called a wonder and a handle because it topologically represents a torus closed surface. Patterns repeat by two translation; the symbol ×, called a miracle and represents a topological crosscap where a pattern repeats as a mirror image without crossing a mirror line. A string written in boldface represents a group of symmetries of Euclidean 3-space. A string not written in boldface represents a group of symmetries of the Euclidean plane, assumed to contain two independent translations; each symbol corresponds to a distinct transformation: an integer n to the left of an asterisk indicates a rotation of order n around a gyration point an integer n to the right of an asterisk indicates a transformation of order 2n which rotates around a kaleidoscopic point and reflects through a line an × indicates a glide reflection the symbol ∞ indicates infinite rotational symmetry around a line.
By abuse of language, we might say that such a group is a subgroup of symmetries of the Euclidean plane with only one independent translation. The frieze groups occur in this way; the exceptional symbol o indicates that there are two linearly independent translations. An orbifold symbol is called good if it is not one of the following: p, pq, *p, *pq, for p,q>=2, p≠q. An object is chiral; the corresponding orbifold is non-orientable otherwise. The Euler characteristic of an orbifold can be read from its Conway symbol; each feature has a value: n without or before an asterisk counts as n − 1 n n after an asterisk counts as n − 1 2 n asterisk and × count as 1 o counts as 2. Subtracting the sum of these values from 2 gives the Euler characteristic. If the sum of the feature values is 2, the order is infinite, i.e. the notation represents a wallpaper group or a frieze group. Indeed, Conway's "Magic Theorem" indicates that the 17 wallpaper groups are those with the sum of the feature values equal to 2.
Otherwise, the order is 2 divided by the Euler characteristic. The following groups are isomorphic: 1* and *11 22 and 221 *22 and *221 2* and 2*1; this is. The symmetry of a 2D object without translational symmetry can be described by the 3D symmetry type by adding a third dimension to the object which does not add or spoil symmetry. For example, for a 2D image we can consider a piece of carton with that image displayed on one side, thus we have n• and *n•. The bullet is added on one- and two-dimensional groups to imply the existence of a fixed point. A 1D image can be drawn horizontally on a piece of carton, with a provision to avoid additional symmetry with respect to the line of the image, e.g. by drawing a horizontal bar under the image. Thus the discrete symmetry groups in one dimension are *•, *1•, ∞• and *∞•. Another way of constructing a 3D object from a 1D or 2D object for describing the symmetry is taking the Cartesian product of the object and an asymmetric 2D or 1D object, respectively.
*Schönflies's point group notation is extended here as infinite cases of the equivalent dihedral points symmetries §The diagram shows one fundamental domain in yellow, with reflection lines in blue, glide reflection lines in dashed green, translation normals in red, 2-fold gyration points as small green squares. A first few hyperbolic groups, ordered by their Euler characteristic are: Mutation of orbifolds Fibrifold notation - an extension of orbifold notation for 3d space groups John H. Conway, Olaf Delgado Friedrichs, Daniel H. Huson, W
Geometry
Geometry is a branch of mathematics concerned with questions of shape, relative position of figures, the properties of space. A mathematician who works in the field of geometry is called a geometer. Geometry arose independently in a number of early cultures as a practical way for dealing with lengths and volumes. Geometry began to see elements of formal mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into an axiomatic form by Euclid, whose treatment, Euclid's Elements, set a standard for many centuries to follow. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC. Islamic scientists expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid analytic footing by mathematicians such as René Descartes and Pierre de Fermat. Since and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, describing spaces that lie beyond the normal range of human experience.
While geometry has evolved throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, planes, surfaces and curves, as well as the more advanced notions of manifolds and topology or metric. Geometry has applications to many fields, including art, physics, as well as to other branches of mathematics. Contemporary geometry has many subfields: Euclidean geometry is geometry in its classical sense; the mandatory educational curriculum of the majority of nations includes the study of points, planes, triangles, similarity, solid figures and analytic geometry. Euclidean geometry has applications in computer science and various branches of modern mathematics. Differential geometry uses techniques of linear algebra to study problems in geometry, it has applications in physics, including in general relativity. Topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this means dealing with large-scale properties of spaces, such as connectedness and compactness.
Convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues using techniques of real analysis. It has close connections to convex analysis and functional analysis and important applications in number theory. Algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques, it has applications including cryptography and string theory. Discrete geometry is concerned with questions of relative position of simple geometric objects, such as points and circles, it shares many principles with combinatorics. Computational geometry deals with algorithms and their implementations for manipulating geometrical objects. Although being a young area of geometry, it has many applications in computer vision, image processing, computer-aided design, medical imaging, etc; the earliest recorded beginnings of geometry can be traced to ancient Mesopotamia and Egypt in the 2nd millennium BC. Early geometry was a collection of empirically discovered principles concerning lengths, angles and volumes, which were developed to meet some practical need in surveying, construction and various crafts.
The earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, or frustum. Clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiter's position and motion within time-velocity space; these geometric procedures anticipated the Oxford Calculators, including the mean speed theorem, by 14 centuries. South of Egypt the ancient Nubians established a system of geometry including early versions of sun clocks. In the 7th century BC, the Greek mathematician Thales of Miletus used geometry to solve problems such as calculating the height of pyramids and the distance of ships from the shore, he is credited with the first use of deductive reasoning applied to geometry, by deriving four corollaries to Thales' Theorem. Pythagoras established the Pythagorean School, credited with the first proof of the Pythagorean theorem, though the statement of the theorem has a long history.
Eudoxus developed the method of exhaustion, which allowed the calculation of areas and volumes of curvilinear figures, as well as a theory of ratios that avoided the problem of incommensurable magnitudes, which enabled subsequent geometers to make significant advances. Around 300 BC, geometry was revolutionized by Euclid, whose Elements considered the most successful and influential textbook of all time, introduced mathematical rigor through the axiomatic method and is the earliest example of the format still used in mathematics today, that of definition, axiom and proof. Although most of the contents of the Elements were known, Euclid arranged them into a single, coherent logical framework; the Elements was known to all educated people in the West until the middle of the 20th century and its contents are still taught in geometry classes today. Archimedes of Syracuse used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, gave remarkably accurate approximations of Pi.
He studied the sp