1.
Constellation
–
A constellation is formally defined as a region of the celestial sphere, with boundaries laid down by the International Astronomical Union. The constellation areas mostly had their origins in Western-traditional patterns of stars from which the constellations take their names, in 1922, the International Astronomical Union officially recognized the 88 modern constellations, which cover the entire sky. They began as the 48 classical Greek constellations laid down by Ptolemy in the Almagest, Constellations in the far southern sky are late 16th- and mid 18th-century constructions. 12 of the 88 constellations compose the zodiac signs, though the positions of the constellations only loosely match the dates assigned to them in astrology. The term constellation can refer to the stars within the boundaries of that constellation. Notable groupings of stars that do not form a constellation are called asterisms, when astronomers say something is “in” a given constellation they mean it is within those official boundaries. Any given point in a coordinate system can unambiguously be assigned to a single constellation. Many astronomical naming systems give the constellation in which an object is found along with a designation in order to convey a rough idea in which part of the sky it is located. For example, the Flamsteed designation for bright stars consists of a number, the word constellation seems to come from the Late Latin term cōnstellātiō, which can be translated as set of stars, and came into use in English during the 14th century. It also denotes 88 named groups of stars in the shape of stellar-patterns, the Ancient Greek word for constellation was ἄστρον. Colloquial usage does not draw a distinction between constellation in the sense of an asterism and constellation in the sense of an area surrounding an asterism. The modern system of constellations used in astronomy employs the latter concept, the term circumpolar constellation is used for any constellation that, from a particular latitude on Earth, never sets below the horizon. From the North Pole or South Pole, all constellations south or north of the equator are circumpolar constellations. In the equatorial or temperate latitudes, the term equatorial constellation has sometimes been used for constellations that lie to the opposite the circumpolar constellations. They generally include all constellations that intersect the celestial equator or part of the zodiac, usually the only thing the stars in a constellation have in common is that they appear near each other in the sky when viewed from the Earth. In galactic space, the stars of a constellation usually lie at a variety of distances, since stars also travel on their own orbits through the Milky Way, the star patterns of the constellations change slowly over time. After tens to hundreds of thousands of years, their familiar outlines will become unrecognisable, the terms chosen for the constellation themselves, together with the appearance of a constellation, may reveal where and when its constellation makers lived. The earliest direct evidence for the constellations comes from inscribed stones and it seems that the bulk of the Mesopotamian constellations were created within a relatively short interval from around 1300 to 1000 BC
2.
Piscis Austrinus
–
Piscis Austrinus is a constellation in the southern celestial hemisphere. The name is Latin for the fish, in contrast with the larger constellation Pisces. Prior to the 20th century, it was known as Piscis Notius. Its only star brighter than fourth magnitude is Fomalhaut, which is a star and is the eighteenth-brightest star in the night sky. Piscis Austrinus was one of the 48 constellations listed by the 2nd-century astronomer Ptolemy, the stars of the modern constellation Grus once formed the tail of Piscis Austrinus. In 1597, Petrus Plancius carved out a separate constellation and named it after the crane, in Greek mythology, this constellation is known as the Great Fish and it is portrayed as swallowing the water being poured out by Aquarius, the water-bearer constellation. The two fish of the constellation Pisces are said to be the offspring of the Great Fish, in Egyptian mythology, this fish saved the life of the Egyptian goddess Isis, so she placed this fish and its descendants into the heavens as constellations of stars. Pisces Austrinus originated with the Babylonian constellation simply known as the Fish, professor of astronomy Bradley Schaefer has proposed that ancient observers must have been able to see as far south as Mu Piscis Austrini to define a pattern that looked like an fish. Piscis Austrinus is a constellation bordered by Capricornus to the northwest, Microscopium to the southwest, Grus to the south, Sculptor to the east, the recommended three-letter abbreviation for the constellation, as adopted by the International Astronomical Union in 1922, is PsA. The official constellation boundaries, as set by Eugène Delporte in 1930, are defined by a polygon of four segments. In the equatorial coordinate system, the right ascension coordinates of these borders lie between 21h 27. 3m and 23h 06. 5m, while the coordinates are between -24. 83° and -36. 46°. Fomalhaut traditionally represents the mouth of the fish, TW Piscis Austrini can be seen close by and is possibly associated with Fomalhaut as it lies within a light-year of it. Of magnitude 6.5, it is a BY Draconis variable, beta, Delta and Zeta constitute the Tien Kang in China. Beta is a star of apparent magnitude 4.29 and spectral type A0. Delta Piscis Austrini is a star with components of magnitude 4.2 and 9.2. Lacaille 9352 is a faint red dwarf star which is a mere 10.74 light-years away, at magnitude 7.34, it is too dim to be seen with the naked eye. NGC7172, NGC7174 and NGC7314 are three galaxies of magnitudes 11.9,12.5 and 10.9, respectively, stars and Planets Guide, Collins, London. The Deep Photographic Guide to the Constellations, Piscis Austrinus Star Tales – Piscis Austrinus Piscis Austrinus at Constellation Guide Warburg Institute Iconographic Database
3.
Right ascension
–
Right ascension is the angular distance measured eastward along the celestial equator from the vernal equinox to the hour circle of the point in question. When combined with declination, these astronomical coordinates specify the direction of a point on the sphere in the equatorial coordinate system. Right ascension is the equivalent of terrestrial longitude. Both right ascension and longitude measure an angle from a direction on an equator. Right ascension is measured continuously in a circle from that equinox towards the east. Any units of measure could have been chosen for right ascension, but it is customarily measured in hours, minutes. Astronomers have chosen this unit to measure right ascension because they measure a stars location by timing its passage through the highest point in the sky as the Earth rotates. The highest point in the sky, called meridian, is the projection of a line onto the celestial sphere. A full circle, measured in units, contains 24 × 60 × 60 = 86 400s, or 24 × 60 = 1 440m. Because right ascensions are measured in hours, they can be used to time the positions of objects in the sky. For example, if a star with RA = 01h 30m 00s is on the meridian, sidereal hour angle, used in celestial navigation, is similar to right ascension, but increases westward rather than eastward. Usually measured in degrees, it is the complement of right ascension with respect to 24h and it is important not to confuse sidereal hour angle with the astronomical concept of hour angle, which measures angular distance of an object westward from the local meridian. The Earths axis rotates slowly westward about the poles of the ecliptic and this effect, known as precession, causes the coordinates of stationary celestial objects to change continuously, if rather slowly. Therefore, equatorial coordinates are inherently relative to the year of their observation, coordinates from different epochs must be mathematically rotated to match each other, or to match a standard epoch. The right ascension of Polaris is increasing quickly, the North Ecliptic Pole in Draco and the South Ecliptic Pole in Dorado are always at right ascension 18h and 6h respectively. The currently used standard epoch is J2000.0, which is January 1,2000 at 12,00 TT, the prefix J indicates that it is a Julian epoch. Prior to J2000.0, astronomers used the successive Besselian Epochs B1875.0, B1900.0, the concept of right ascension has been known at least as far back as Hipparchus who measured stars in equatorial coordinates in the 2nd century BC. But Hipparchus and his successors made their star catalogs in ecliptic coordinates, the easiest way to do that is to use an equatorial mount, which allows the telescope to be aligned with one of its two pivots parallel to the Earths axis
4.
Declination
–
In astronomy, declination is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. Declinations angle is measured north or south of the celestial equator, the root of the word declination means a bending away or a bending down. It comes from the root as the words incline and recline. Declination in astronomy is comparable to geographic latitude, projected onto the celestial sphere, points north of the celestial equator have positive declinations, while those south have negative declinations. Any units of measure can be used for declination, but it is customarily measured in the degrees, minutes. Declinations with magnitudes greater than 90° do not occur, because the poles are the northernmost and southernmost points of the celestial sphere, the Earths axis rotates slowly westward about the poles of the ecliptic, completing one circuit in about 26,000 years. This effect, known as precession, causes the coordinates of stationary celestial objects to change continuously, therefore, equatorial coordinates are inherently relative to the year of their observation, and astronomers specify them with reference to a particular year, known as an epoch. Coordinates from different epochs must be rotated to match each other. The currently used standard epoch is J2000.0, which is January 1,2000 at 12,00 TT, the prefix J indicates that it is a Julian epoch. Prior to J2000.0, astronomers used the successive Besselian Epochs B1875.0, B1900.0, the declinations of Solar System objects change very rapidly compared to those of stars, due to orbital motion and close proximity. This similarly occurs in the Southern Hemisphere for objects with less than −90° − φ. An extreme example is the star which has a declination near to +90°. Circumpolar stars never dip below the horizon, conversely, there are other stars that never rise above the horizon, as seen from any given point on the Earths surface. Generally, if a star whose declination is δ is circumpolar for some observer, then a star whose declination is −δ never rises above the horizon, as seen by the same observer. Likewise, if a star is circumpolar for an observer at latitude φ, neglecting atmospheric refraction, declination is always 0° at east and west points of the horizon. At the north point, it is 90° − |φ|, and at the south point, from the poles, declination is uniform around the entire horizon, approximately 0°. Non-circumpolar stars are visible only during certain days or seasons of the year, the Suns declination varies with the seasons. As seen from arctic or antarctic latitudes, the Sun is circumpolar near the summer solstice, leading to the phenomenon of it being above the horizon at midnight
5.
Apparent magnitude
–
The apparent magnitude of a celestial object is a number that is a measure of its brightness as seen by an observer on Earth. The brighter an object appears, the lower its magnitude value, the Sun, at apparent magnitude of −27, is the brightest object in the sky. It is adjusted to the value it would have in the absence of the atmosphere, furthermore, the magnitude scale is logarithmic, a difference of one in magnitude corresponds to a change in brightness by a factor of 5√100, or about 2.512. The measurement of apparent magnitudes or brightnesses of celestial objects is known as photometry, apparent magnitudes are used to quantify the brightness of sources at ultraviolet, visible, and infrared wavelengths. An apparent magnitude is measured in a specific passband corresponding to some photometric system such as the UBV system. In standard astronomical notation, an apparent magnitude in the V filter band would be denoted either as mV or often simply as V, the scale used to indicate magnitude originates in the Hellenistic practice of dividing stars visible to the naked eye into six magnitudes. The brightest stars in the sky were said to be of first magnitude, whereas the faintest were of sixth magnitude. Each grade of magnitude was considered twice the brightness of the following grade and this rather crude scale for the brightness of stars was popularized by Ptolemy in his Almagest, and is generally believed to have originated with Hipparchus. This implies that a star of magnitude m is 2.512 times as bright as a star of magnitude m +1 and this figure, the fifth root of 100, became known as Pogsons Ratio. The zero point of Pogsons scale was defined by assigning Polaris a magnitude of exactly 2. However, with the advent of infrared astronomy it was revealed that Vegas radiation includes an Infrared excess presumably due to a disk consisting of dust at warm temperatures. At shorter wavelengths, there is negligible emission from dust at these temperatures, however, in order to properly extend the magnitude scale further into the infrared, this peculiarity of Vega should not affect the definition of the magnitude scale. Therefore, the scale was extrapolated to all wavelengths on the basis of the black body radiation curve for an ideal stellar surface at 11000 K uncontaminated by circumstellar radiation. On this basis the spectral irradiance for the zero magnitude point, with the modern magnitude systems, brightness over a very wide range is specified according to the logarithmic definition detailed below, using this zero reference. In practice such apparent magnitudes do not exceed 30, astronomers have developed other photometric zeropoint systems as alternatives to the Vega system. The AB magnitude zeropoint is defined such that an objects AB, the dimmer an object appears, the higher the numerical value given to its apparent magnitude, with a difference of 5 magnitudes corresponding to a brightness factor of exactly 100. Since an increase of 5 magnitudes corresponds to a decrease in brightness by a factor of exactly 100, each magnitude increase implies a decrease in brightness by the factor 5√100 ≈2.512. Inverting the above formula, a magnitude difference m1 − m2 = Δm implies a brightness factor of F2 F1 =100 Δ m 5 =100.4 Δ m ≈2.512 Δ m
6.
Stellar classification
–
In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with absorption lines, each line indicates an ion of a certain chemical element, with the line strength indicating the abundance of that ion. The relative abundance of the different ions varies with the temperature of the photosphere, the spectral class of a star is a short code summarizing the ionization state, giving an objective measure of the photospheres temperature and density. Most stars are classified under the Morgan–Keenan system using the letters O, B, A, F, G, K, and M. Each letter class is subdivided using a numeric digit with 0 being hottest and 9 being coolest. The sequence has been expanded with classes for other stars and star-like objects that do not fit in the system, such as class D for white dwarfs. In the MK system, a luminosity class is added to the class using Roman numerals. This is based on the width of absorption lines in the stars spectrum. The full spectral class for the Sun is then G2V, indicating a main-sequence star with a temperature around 5,800 K, the conventional color description takes into account only the peak of the stellar spectrum. This means that the assignment of colors of the spectrum can be misleading. There are no green, indigo, or violet stars, likewise, the brown dwarfs do not literally appear brown. The modern classification system is known as the Morgan–Keenan classification, each star is assigned a spectral class from the older Harvard spectral classification and a luminosity class using Roman numerals as explained below, forming the stars spectral type. The spectral classes O through M, as well as more specialized classes discussed later, are subdivided by Arabic numerals. For example, A0 denotes the hottest stars in the A class, fractional numbers are allowed, for example, the star Mu Normae is classified as O9.7. The Sun is classified as G2, the conventional color descriptions are traditional in astronomy, and represent colors relative to the mean color of an A-class star, which is considered to be white. The apparent color descriptions are what the observer would see if trying to describe the stars under a dark sky without aid to the eye, or with binoculars. However, most stars in the sky, except the brightest ones, red supergiants are cooler and redder than dwarfs of the same spectral type, and stars with particular spectral features such as carbon stars may be far redder than any black body. O-, B-, and A-type stars are called early type
7.
Astrometry
–
Astrometry is the branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. The information obtained by astrometric measurements provides information on the kinematics and physical origin of the Solar System and our galaxy, the history of astrometry is linked to the history of star catalogues, which gave astronomers reference points for objects in the sky so they could track their movements. This can be dated back to Hipparchus, who around 190 BC used the catalogue of his predecessors Timocharis, in doing so, he also developed the brightness scale still in use today. Hipparchus compiled a catalogue with at least 850 stars and their positions, hipparchuss successor, Ptolemy, included a catalogue of 1,022 stars in his work the Almagest, giving their location, coordinates, and brightness. Ibn Yunus observed more than 10,000 entries for the Suns position for years using a large astrolabe with a diameter of nearly 1.4 metres. In the 15th century, the Timurid astronomer Ulugh Beg compiled the Zij-i-Sultani, like the earlier catalogs of Hipparchus and Ptolemy, Ulugh Begs catalogue is estimated to have been precise to within approximately 20 minutes of arc. In the 16th century, Tycho Brahe used improved instruments, including large mural instruments, to measure star positions more accurately than previously, Taqi al-Din measured the right ascension of the stars at the Istanbul observatory of Taqi al-Din using the observational clock he invented. When telescopes became commonplace, setting circles sped measurements James Bradley first tried to measure stellar parallaxes in 1729, the stellar movement proved too insignificant for his telescope, but he instead discovered the aberration of light and the nutation of the Earths axis. His cataloguing of 3222 stars was refined in 1807 by Friedrich Bessel and he made the first measurement of stellar parallax,0.3 arcsec for the binary star 61 Cygni. Being very difficult to measure, only about 60 stellar parallaxes had been obtained by the end of the 19th century, astrographs using astronomical photographic plates sped the process in the early 20th century. Automated plate-measuring machines and more sophisticated technology of the 1960s allowed more efficient compilation of star catalogues. In the 1980s, charge-coupled devices replaced photographic plates and reduced optical uncertainties to one milliarcsecond and this technology made astrometry less expensive, opening the field to an amateur audience. In 1989, the European Space Agencys Hipparcos satellite took astrometry into orbit, operated from 1989 to 1993, Hipparcos measured large and small angles on the sky with much greater precision than any previous optical telescopes. During its 4-year run, the positions, parallaxes, and proper motions of 118,218 stars were determined with a degree of accuracy. A new Tycho catalog drew together a database of 1,058,332 to within 20-30 mas, additional catalogues were compiled for the 23,882 double/multiple stars and 11,597 variable stars also analyzed during the Hipparcos mission. Today, the catalogue most often used is USNO-B1.0, during the past 50 years,7,435 Schmidt camera plates were used to complete several sky surveys that make the data in USNO-B1.0 accurate to within 0.2 arcsec. In observational astronomy, astrometric techniques help identify stellar objects by their unique motions and it is instrumental for keeping time, in that UTC is basically the atomic time synchronized to Earths rotation by means of exact observations. Astrometry is an important step in the distance ladder because it establishes parallax distance estimates for stars in the Milky Way
8.
Proper motion
–
The components of proper motion in the equatorial coordinate system are measured in seconds of time for right ascension and seconds of arc in declination. Their combined value is computed as the proper motion, which is expressed in seconds of arc per year or per century. Knowledge of the motion, distance, and radial velocity allow approximate calculations of a stars true motion in space in respect to the Sun. Proper motion is not entirely proper, because it includes a component due to the motion of the Solar System itself, over the course of centuries, stars appear to maintain nearly fixed positions with respect to each other, so that they form the same constellations over historical time. Ursa Major or Crux, for example, looks nearly the same now as they did hundreds of years ago, however, precise long-term observations show that the constellations change shape, albeit very slowly, and that each star has an independent motion. This motion is caused by the movement of the relative to the Sun. The proper motion is a vector and is thus defined by two quantities, its position angle and its magnitude. The first quantity indicates the direction of the motion on the celestial sphere. Proper motion may alternatively be defined by the changes per year in the stars right ascension and declination. The components of motion by convention are arrived at as follows. Suppose in a year an object moves from coordinates to coordinates, then the changes of angle in seconds of arc per year are, The magnitude of the proper motion μ is given by vector addition of its components, where δ is the declination. The factor in cos δ accounts for the fact that the radius from the axis of the sphere to its surface varies as cos δ, becoming, for example, zero at the pole. Thus, the component of velocity parallel to the corresponding to a given angular change in α is smaller the further north the objects location. The change μα, which must be multiplied by cos δ to become a component of the motion, is sometimes called the proper motion in right ascension. Hence, the proper motions in right ascension and declination are made equivalent for straightforward calculations of various other stellar motions. Position angle θ is related to these components by, Motions in equatorial coordinates can be converted to motions in galactic coordinates, for the majority of stars seen in the sky, the observed proper motions are usually small and unremarkable. Such stars are either faint or are significantly distant, have changes of below 10 milliarcseconds per year. A few do have significant motions, and are usually called high-proper motion stars, Motions can also be in almost seemingly random directions
9.
Minute and second of arc
–
A minute of arc, arcminute, arc minute, or minute arc is a unit of angular measurement equal to 1/60 of one degree. Since one degree is 1/360 of a turn, one minute of arc is 1/21600 of a turn, a second of arc, arcsecond, or arc second is 1/60 of an arcminute, 1/3600 of a degree, 1/1296000 of a turn, and π/648000 of a radian. To express even smaller angles, standard SI prefixes can be employed, the number of square arcminutes in a complete sphere is 4 π2 =466560000 π ≈148510660 square arcminutes. The standard symbol for marking the arcminute is the prime, though a single quote is used where only ASCII characters are permitted. One arcminute is thus written 1′ and it is also abbreviated as arcmin or amin or, less commonly, the prime with a circumflex over it. The standard symbol for the arcsecond is the prime, though a double quote is commonly used where only ASCII characters are permitted. One arcsecond is thus written 1″ and it is also abbreviated as arcsec or asec. In celestial navigation, seconds of arc are used in calculations. This notation has been carried over into marine GPS receivers, which normally display latitude and longitude in the format by default. An arcsecond is approximately the angle subtended by a U. S. dime coin at a distance of 4 kilometres, a milliarcsecond is about the size of a dime atop the Eiffel Tower as seen from New York City. A microarcsecond is about the size of a period at the end of a sentence in the Apollo mission manuals left on the Moon as seen from Earth, since antiquity the arcminute and arcsecond have been used in astronomy. The principal exception is Right ascension in equatorial coordinates, which is measured in units of hours, minutes. These small angles may also be written in milliarcseconds, or thousandths of an arcsecond, the unit of distance, the parsec, named from the parallax of one arcsecond, was developed for such parallax measurements. It is the distance at which the radius of the Earths orbit would subtend an angle of one arcsecond. The ESA astrometric space probe Gaia is hoped to measure star positions to 20 microarcseconds when it begins producing catalog positions sometime after 2016, there are about 1.3 trillion µas in a turn. Currently the best catalog positions of stars actually measured are in terms of milliarcseconds, apart from the Sun, the star with the largest angular diameter from Earth is R Doradus, a red supergiant with a diameter of 0.05 arcsecond. The dwarf planet Pluto has proven difficult to resolve because its angular diameter is about 0.1 arcsecond, space telescopes are not affected by the Earths atmosphere but are diffraction limited. For example, the Hubble space telescope can reach a size of stars down to about 0. 1″
10.
Year
–
A year is the orbital period of the Earth moving in its orbit around the Sun. Due to the Earths axial tilt, the course of a year sees the passing of the seasons, marked by changes in weather, the hours of daylight, and, consequently, vegetation and soil fertility. In temperate and subpolar regions around the globe, four seasons are recognized, spring, summer, autumn. In tropical and subtropical regions several geographical sectors do not present defined seasons, but in the seasonal tropics, a calendar year is an approximation of the number of days of the Earths orbital period as counted in a given calendar. The Gregorian, or modern, calendar, presents its calendar year to be either a common year of 365 days or a year of 366 days, as do the Julian calendars. For the Gregorian calendar the average length of the year across the complete leap cycle of 400 years is 365.2425 days. The ISO standard ISO 80000-3, Annex C, supports the symbol a to represent a year of either 365 or 366 days, in English, the abbreviations y and yr are commonly used. In astronomy, the Julian year is a unit of time, it is defined as 365.25 days of exactly 86400 seconds, totalling exactly 31557600 seconds in the Julian astronomical year. The word year is used for periods loosely associated with, but not identical to, the calendar or astronomical year, such as the seasonal year, the fiscal year. Similarly, year can mean the period of any planet, for example. The term can also be used in reference to any long period or cycle, west Saxon ġēar, Anglian ġēr continues Proto-Germanic *jǣran. Cognates are German Jahr, Old High German jār, Old Norse ár and Gothic jer, all the descendants of the Proto-Indo-European noun *yeh₁rom year, season. Cognates also descended from the same Proto-Indo-European noun are Avestan yārǝ year, Greek ὥρα year, season, period of time, Old Church Slavonic jarŭ, Latin annus is from a PIE noun *h₂et-no-, which also yielded Gothic aþn year. Both *yeh₁-ro- and *h₂et-no- are based on verbal roots expressing movement, *h₁ey- and *h₂et- respectively, the Greek word for year, ἔτος, is cognate with Latin vetus old, from the PIE word *wetos- year, also preserved in this meaning in Sanskrit vat-sa- yearling and vat-sa-ras year. Derived from Latin annus are a number of English words, such as annual, annuity, anniversary, etc. per annum means each year, anno Domini means in the year of the Lord. No astronomical year has an number of days or lunar months. Financial and scientific calculations often use a 365-day calendar to simplify daily rates, in the Julian calendar, the average length of a year is 365.25 days. In a non-leap year, there are 365 days, in a year there are 366 days
11.
Stellar parallax
–
Stellar parallax is parallax on an interstellar scale, the apparent shift of position of any nearby star against the background of distant objects. Stellar parallax is so difficult to detect that its existence was the subject of debate in astronomy for thousands of years. It was first observed by Giuseppe Calandrelli who reported parallax in α-Lyrae in his work Osservazione e riflessione sulla parallasse annua dall’alfa della Lira, then in 1838 Friedrich Bessel made the first successful parallax measurement ever, for the star 61 Cygni, using a Fraunhofer heliometer at Königsberg Observatory. Once a stars parallax is known, its distance from Earth can be computed trigonometrically, but the more distant an object is, the smaller its parallax. Even with 21st-century techniques in astrometry, the limits of accurate measurement make distances farther away than about 100 parsecs too approximate to be useful when obtained by this technique. Relatively close on a scale, the applicability of stellar parallax leaves most astronomical distance measurements to be calculated by spectral red-shift or other methods. Stellar parallax measures are given in the units of arcseconds. The distance unit parsec is defined as the length of the leg of a right triangle adjacent to the angle of one arcsecond at one vertex, because stellar parallaxes and distances all involve such skinny right triangles, a convenient trigonometric approximation can be used to convert parallaxes to distance. The distance is simply the reciprocal of the parallax, d =1 / p, for example, Proxima Centauri, whose parallax is 0.7687, is 1 /0.7687 =1.3009 parsecs distant. Stellar parallax is so small that its apparent absence was used as an argument against heliocentrism during the early modern age. James Bradley first tried to measure stellar parallaxes in 1729, the stellar movement proved too insignificant for his telescope, but he instead discovered the aberration of light, the nutation of Earth’s axis, and catalogued 3222 stars. The parsec is defined as the distance for which the annual parallax is 1 arcsecond, annual parallax is normally measured by observing the position of a star at different times of the year as Earth moves through its orbit. Measurement of annual parallax was the first reliable way to determine the distances to the closest stars, the first successful measurements of stellar parallax were made by Friedrich Bessel in 1838 for the star 61 Cygni using a heliometer. Being very difficult to measure, only about 60 stellar parallaxes had been obtained by the end of the 19th century, astrographs using astronomical photographic plates sped the process in the early 20th century. Automated plate-measuring machines and more sophisticated technology of the 1960s allowed more efficient compilation of star catalogues. In the 1980s, charge-coupled devices replaced photographic plates and reduced optical uncertainties to one milliarcsecond, stellar parallax remains the standard for calibrating other measurement methods. The angles involved in these calculations are very small and thus difficult to measure, the nearest star to the Sun, Proxima Centauri, has a parallax of 0.7687 ±0.0003 arcsec. This angle is approximately that subtended by an object 2 centimeters in diameter located 5.3 kilometers away
12.
Distance (astronomy)
–
The cosmic distance ladder is the succession of methods by which astronomers determine the distances to celestial objects. A real direct distance measurement of an object is possible only for those objects that are close enough to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at distances and methods that work at larger distances. Several methods rely on a candle, which is an astronomical object that has a known luminosity. The ladder analogy arises because no single technique can measure distances at all ranges encountered in astronomy, instead, one method can be used to measure nearby distances, a second can be used to measure nearby to intermediate distances, and so on. Each rung of the ladder provides information that can be used to determine the distances at the next higher rung, at the base of the ladder are fundamental distance measurements, in which distances are determined directly, with no physical assumptions about the nature of the object in question. The precise measurement of stellar positions is part of the discipline of astrometry, direct distance measurements are based upon the astronomical unit, which is the distance between the Earth and the Sun. Historically, observations of transits of Venus were crucial in determining the AU, in the first half of the 20th century, observations of asteroids were also important. Keplers laws provide precise ratios of the sizes of the orbits of objects orbiting the Sun, radar is used to measure the distance between the orbits of the Earth and of a second body. From that measurement and the ratio of the two sizes, the size of Earths orbit is calculated. The Earths orbit is known with a precision of a few meters, the most important fundamental distance measurements come from trigonometric parallax. As the Earth orbits the Sun, the position of stars will appear to shift slightly against the more distant background. These shifts are angles in a triangle, with 2 AU making the base leg of the triangle. The amount of shift is small, measuring 1 arcsecond for an object at the 1 parsec distance of the nearest stars. Astronomers usually express distances in units of parsecs, light-years are used in popular media, because parallax becomes smaller for a greater stellar distance, useful distances can be measured only for stars whose parallax is larger than a few times the precision of the measurement. Parallax measurements typically have an accuracy measured in milliarcseconds, the Hubble telescope WFC3 now has the potential to provide a precision of 20 to 40 microarcseconds, enabling reliable distance measurements up to 5,000 parsecs for small numbers of stars. By the early 2020s, the GAIA space mission will provide similarly accurate distances to all bright stars. Stars have a velocity relative to the Sun that causes proper motion, for a group of stars with the same spectral class and a similar magnitude range, a mean parallax can be derived from statistical analysis of the proper motions relative to their radial velocities
13.
Parsec
–
The parsec is a unit of length used to measure large distances to objects outside the Solar System. One parsec is the distance at which one astronomical unit subtends an angle of one arcsecond, a parsec is equal to about 3.26 light-years in length. The nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun, most of the stars visible to the unaided eye in the nighttime sky are within 500 parsecs of the Sun. The parsec unit was likely first suggested in 1913 by the British astronomer Herbert Hall Turner, named from an abbreviation of the parallax of one arcsecond, it was defined so as to make calculations of astronomical distances quick and easy for astronomers from only their raw observational data. Partly for this reason, it is still the unit preferred in astronomy and astrophysics, though the light-year remains prominent in science texts. This corresponds to the definition of the parsec found in many contemporary astronomical references. Derivation, create a triangle with one leg being from the Earth to the Sun. As that point in space away, the angle between the Sun and Earth decreases. A parsec is the length of that leg when the angle between the Sun and Earth is one arc-second. One of the oldest methods used by astronomers to calculate the distance to a star is to record the difference in angle between two measurements of the position of the star in the sky. The first measurement is taken from the Earth on one side of the Sun, and the second is approximately half a year later. The distance between the two positions of the Earth when the two measurements were taken is twice the distance between the Earth and the Sun. The difference in angle between the two measurements is twice the angle, which is formed by lines from the Sun. Then the distance to the star could be calculated using trigonometry. 5-parsec distance of 61 Cygni, the parallax of a star is defined as half of the angular distance that a star appears to move relative to the celestial sphere as Earth orbits the Sun. Equivalently, it is the angle, from that stars perspective. The star, the Sun and the Earth form the corners of a right triangle in space, the right angle is the corner at the Sun. Therefore, given a measurement of the angle, along with the rules of trigonometry. A parsec is defined as the length of the adjacent to the vertex occupied by a star whose parallax angle is one arcsecond
14.
Orbit
–
In physics, an orbit is the gravitationally curved path of an object around a point in space, for example the orbit of a planet about a star or a natural satellite around a planet. Normally, orbit refers to a regularly repeating path around a body, to a close approximation, planets and satellites follow elliptical orbits, with the central mass being orbited at a focal point of the ellipse, as described by Keplers laws of planetary motion. For ease of calculation, in most situations orbital motion is adequately approximated by Newtonian Mechanics, historically, the apparent motions of the planets were described by European and Arabic philosophers using the idea of celestial spheres. This model posited the existence of perfect moving spheres or rings to which the stars and it assumed the heavens were fixed apart from the motion of the spheres, and was developed without any understanding of gravity. After the planets motions were accurately measured, theoretical mechanisms such as deferent. Originally geocentric it was modified by Copernicus to place the sun at the centre to help simplify the model, the model was further challenged during the 16th century, as comets were observed traversing the spheres. The basis for the understanding of orbits was first formulated by Johannes Kepler whose results are summarised in his three laws of planetary motion. Second, he found that the speed of each planet is not constant, as had previously been thought. Third, Kepler found a relationship between the orbital properties of all the planets orbiting the Sun. For the planets, the cubes of their distances from the Sun are proportional to the squares of their orbital periods. Jupiter and Venus, for example, are respectively about 5.2 and 0.723 AU distant from the Sun, their orbital periods respectively about 11.86 and 0.615 years. The proportionality is seen by the fact that the ratio for Jupiter,5. 23/11.862, is equal to that for Venus,0. 7233/0.6152. Idealised orbits meeting these rules are known as Kepler orbits, isaac Newton demonstrated that Keplers laws were derivable from his theory of gravitation and that, in general, the orbits of bodies subject to gravity were conic sections. Newton showed that, for a pair of bodies, the sizes are in inverse proportion to their masses. Where one body is more massive than the other, it is a convenient approximation to take the center of mass as coinciding with the center of the more massive body. Lagrange developed a new approach to Newtonian mechanics emphasizing energy more than force, in a dramatic vindication of classical mechanics, in 1846 le Verrier was able to predict the position of Neptune based on unexplained perturbations in the orbit of Uranus. This led astronomers to recognize that Newtonian mechanics did not provide the highest accuracy in understanding orbits, in relativity theory, orbits follow geodesic trajectories which are usually approximated very well by the Newtonian predictions but the differences are measurable. Essentially all the evidence that can distinguish between the theories agrees with relativity theory to within experimental measurement accuracy
15.
Semi-major and semi-minor axes
–
In geometry, the major axis of an ellipse is its longest diameter, a line segment that runs through the center and both foci, with ends at the widest points of the perimeter. The semi-major axis is one half of the axis, and thus runs from the centre, through a focus. Essentially, it is the radius of an orbit at the two most distant points. For the special case of a circle, the axis is the radius. One can think of the axis as an ellipses long radius. The semi-major axis of a hyperbola is, depending on the convention, thus it is the distance from the center to either vertex of the hyperbola. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction. Thus a and b tend to infinity, a faster than b, the semi-minor axis is a line segment associated with most conic sections that is at right angles with the semi-major axis and has one end at the center of the conic section. It is one of the axes of symmetry for the curve, in an ellipse, the one, in a hyperbola. The semi-major axis is the value of the maximum and minimum distances r max and r min of the ellipse from a focus — that is. In astronomy these extreme points are called apsis, the semi-minor axis of an ellipse is the geometric mean of these distances, b = r max r min. The eccentricity of an ellipse is defined as e =1 − b 2 a 2 so r min = a, r max = a. Now consider the equation in polar coordinates, with one focus at the origin, the mean value of r = ℓ / and r = ℓ /, for θ = π and θ =0 is a = ℓ1 − e 2. In an ellipse, the axis is the geometric mean of the distance from the center to either focus. The semi-minor axis of an ellipse runs from the center of the ellipse to the edge of the ellipse, the semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the axis that connects two points on the ellipses edge. The semi-minor axis b is related to the axis a through the eccentricity e. A parabola can be obtained as the limit of a sequence of ellipses where one focus is fixed as the other is allowed to move arbitrarily far away in one direction
16.
Orbital eccentricity
–
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is an orbit, values between 0 and 1 form an elliptical orbit,1 is a parabolic escape orbit. The term derives its name from the parameters of conic sections and it is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit, the eccentricity of this Kepler orbit is a non-negative number that defines its shape. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola, radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits have zero angular momentum and hence eccentricity equal to one, keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity. From Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros out of the center, from ἐκ- ek-, eccentric first appeared in English in 1551, with the definition a circle in which the earth, sun. Five years later, in 1556, a form of the word was added. The eccentricity of an orbit can be calculated from the state vectors as the magnitude of the eccentricity vector, e = | e | where. For elliptical orbits it can also be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p =1 −2 r a r p +1 where, rp is the radius at periapsis. For Earths annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈1.034 relative to center point of path, the eccentricity of the Earths orbit is currently about 0.0167, the Earths orbit is nearly circular. Venus and Neptune have even lower eccentricity, over hundreds of thousands of years, the eccentricity of the Earths orbit varies from nearly 0.0034 to almost 0.058 as a result of gravitational attractions among the planets. The table lists the values for all planets and dwarf planets, Mercury has the greatest orbital eccentricity of any planet in the Solar System. Such eccentricity is sufficient for Mercury to receive twice as much solar irradiation at perihelion compared to aphelion, before its demotion from planet status in 2006, Pluto was considered to be the planet with the most eccentric orbit
17.
Orbital inclination
–
Orbital inclination measures the tilt of an objects orbit around a celestial body. It is expressed as the angle between a plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Earth directly above the equator, the plane of the orbit is the same as the Earths equatorial plane. The general case is that the orbit is tilted, it spends half an orbit over the northern hemisphere. If the orbit swung between 20° north latitude and 20° south latitude, then its orbital inclination would be 20°, the inclination is one of the six orbital elements describing the shape and orientation of a celestial orbit. It is the angle between the plane and the plane of reference, normally stated in degrees. For a satellite orbiting a planet, the plane of reference is usually the plane containing the planets equator, for planets in the Solar System, the plane of reference is usually the ecliptic, the plane in which the Earth orbits the Sun. This reference plane is most practical for Earth-based observers, therefore, Earths inclination is, by definition, zero. Inclination could instead be measured with respect to another plane, such as the Suns equator or the invariable plane, the inclination of orbits of natural or artificial satellites is measured relative to the equatorial plane of the body they orbit, if they orbit sufficiently closely. The equatorial plane is the perpendicular to the axis of rotation of the central body. An inclination of 30° could also be described using an angle of 150°, the convention is that the normal orbit is prograde, an orbit in the same direction as the planet rotates. Inclinations greater than 90° describe retrograde orbits, thus, An inclination of 0° means the orbiting body has a prograde orbit in the planets equatorial plane. An inclination greater than 0° and less than 90° also describe prograde orbits, an inclination of 63. 4° is often called a critical inclination, when describing artificial satellites orbiting the Earth, because they have zero apogee drift. An inclination of exactly 90° is an orbit, in which the spacecraft passes over the north and south poles of the planet. An inclination greater than 90° and less than 180° is a retrograde orbit, an inclination of exactly 180° is a retrograde equatorial orbit. For gas giants, the orbits of moons tend to be aligned with the giant planets equator, the inclination of exoplanets or members of multiple stars is the angle of the plane of the orbit relative to the plane perpendicular to the line-of-sight from Earth to the object. An inclination of 0° is an orbit, meaning the plane of its orbit is parallel to the sky. An inclination of 90° is an orbit, meaning the plane of its orbit is perpendicular to the sky