1.
University of Tennessee at Martin
–
The University of Tennessee at Martin, located in Martin, Tennessee, in the United States, is one of the five campuses of the University of Tennessee system. Prior to the acquisition of Lambuth University in Jackson by University of Memphis in 2011, UTM operates a large experimental farm and several satellite centers in West Tennessee. Although UT Martin dates from 1927, it is not the first educational institution to use the current site, in 1900, Ada Gardner Brooks donated a site on what was then the outskirts of Martin to the Tennessee Baptist Convention for the purposes of opening a school. The school opened as the Hall-Moody Institute, named for two locally prominent Baptist ministers and it originally offered 13 years of study, from elementary grades to the equivalent of the first years of collegiate work. The institute changed its name to Hall-Moody Normal School in 1917, five years later, Hall-Moody changed its name again to Hall-Moody Junior College. Due to declining enrollment and financial difficulties in the mid-1920s, Hall-Moody Junior College was in danger of closing, in 1927, the Tennessee Baptist Convention made the decision to consolidate Hall-Moody with a similar institution, Union University, in nearby Jackson. University of Tennessee president Harcourt Morgan agreed to accept the proposition on the condition that the Martin community would acquire the property as well as space for expansion, the City of Martin and Weakley County sold bonds to purchase the campus and some surrounding land. On February 10,1927, Senate Bill Number 301 established the University of Tennessee Junior College in Martin, on March 29, it was officially approved by Governor Austin Peay. However, an influx of returning servicemen ushered in rapid growth both in enrollment and educational offerings, in 1951, with the addition of four-year fields of study leading to a bachelors degree, it was redesignated the University of Tennessee Martin Branch. In 1961, it was the first campus in the University of Tennessee system to begin racial desegregation of undergraduates, until 1967, it was treated as an off-site department of the main campus in Knoxville. As such, its presiding officer was known first as an executive officer, in 1967, it was granted equal status with the main campus in Knoxville under its current name, and its presiding officer was granted the title of chancellor. The school grew greatly from the post-World War II era, largely under the influence of the G. I, Bill of Rights, through the 1960s under the leadership of Paul Meek, who led the school from 1934 to 1967. It was noted that the school had almost as many entering freshmen in 1969 as it had students in 1961. C. Porter Claxton Paul Meek Archie R. Dykes Larry T. McGehee Charles E. Smith Margaret N. Perry Philip W. Conn Nick Dunagan Thomas A. Rakes Robert M. Smith Keith S. Carver, Jr. There is an active ROTC program and a school of nursing, the school is among the top providers of candidates to the University of Tennessee Health Science Center in Memphis. There is a graduate school, with most graduate degrees being conferred in education. The university is accredited by the Southern Association of Colleges. During the tenure of Dr. Robert Smith, UT Martin successfuly met the challenge and was removed from probation and he was also granted the honorary title chancellor emeritus

2.
Prime number
–
A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a number is called a composite number. For example,5 is prime because 1 and 5 are its only positive integer factors, the property of being prime is called primality. A simple but slow method of verifying the primality of a number n is known as trial division. It consists of testing whether n is a multiple of any integer between 2 and n, algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of forms, such as Mersenne numbers. As of January 2016, the largest known prime number has 22,338,618 decimal digits, there are infinitely many primes, as demonstrated by Euclid around 300 BC. There is no simple formula that separates prime numbers from composite numbers. However, the distribution of primes, that is to say, many questions regarding prime numbers remain open, such as Goldbachs conjecture, and the twin prime conjecture. Such questions spurred the development of branches of number theory. Prime numbers give rise to various generalizations in other domains, mainly algebra, such as prime elements. A natural number is called a number if it has exactly two positive divisors,1 and the number itself. Natural numbers greater than 1 that are not prime are called composite, among the numbers 1 to 6, the numbers 2,3, and 5 are the prime numbers, while 1,4, and 6 are not prime. 1 is excluded as a number, for reasons explained below. 2 is a number, since the only natural numbers dividing it are 1 and 2. Next,3 is prime, too,1 and 3 do divide 3 without remainder, however,4 is composite, since 2 is another number dividing 4 without remainder,4 =2 ·2. 5 is again prime, none of the numbers 2,3, next,6 is divisible by 2 or 3, since 6 =2 ·3. The image at the right illustrates that 12 is not prime,12 =3 ·4, no even number greater than 2 is prime because by definition, any such number n has at least three distinct divisors, namely 1,2, and n

3.
On-Line Encyclopedia of Integer Sequences
–
The On-Line Encyclopedia of Integer Sequences, also cited simply as Sloanes, is an online database of integer sequences. It was created and maintained by Neil Sloane while a researcher at AT&T Labs, Sloane continues to be involved in the OEIS in his role as President of the OEIS Foundation. OEIS records information on integer sequences of interest to professional mathematicians and amateurs, and is widely cited. As of 30 December 2016 it contains nearly 280,000 sequences, the database is searchable by keyword and by subsequence. Neil Sloane started collecting integer sequences as a student in 1965 to support his work in combinatorics. The database was at first stored on punched cards and he published selections from the database in book form twice, A Handbook of Integer Sequences, containing 2,372 sequences in lexicographic order and assigned numbers from 1 to 2372. The Encyclopedia of Integer Sequences with Simon Plouffe, containing 5,488 sequences and these books were well received and, especially after the second publication, mathematicians supplied Sloane with a steady flow of new sequences. The collection became unmanageable in book form, and when the database had reached 16,000 entries Sloane decided to go online—first as an e-mail service, as a spin-off from the database work, Sloane founded the Journal of Integer Sequences in 1998. The database continues to grow at a rate of some 10,000 entries a year, Sloane has personally managed his sequences for almost 40 years, but starting in 2002, a board of associate editors and volunteers has helped maintain the database. In 2004, Sloane celebrated the addition of the 100, 000th sequence to the database, A100000, in 2006, the user interface was overhauled and more advanced search capabilities were added. In 2010 an OEIS wiki at OEIS. org was created to simplify the collaboration of the OEIS editors and contributors, besides integer sequences, the OEIS also catalogs sequences of fractions, the digits of transcendental numbers, complex numbers and so on by transforming them into integer sequences. Sequences of rationals are represented by two sequences, the sequence of numerators and the sequence of denominators, important irrational numbers such as π =3.1415926535897. are catalogued under representative integer sequences such as decimal expansions, binary expansions, or continued fraction expansions. The OEIS was limited to plain ASCII text until 2011, yet it still uses a form of conventional mathematical notation. Greek letters are represented by their full names, e. g. mu for μ. Every sequence is identified by the letter A followed by six digits, sometimes referred to without the leading zeros, individual terms of sequences are separated by commas. Digit groups are not separated by commas, periods, or spaces, a represents the nth term of the sequence. Zero is often used to represent non-existent sequence elements, for example, A104157 enumerates the smallest prime of n² consecutive primes to form an n×n magic square of least magic constant, or 0 if no such magic square exists. The value of a is 2, a is 1480028129, but there is no such 2×2 magic square, so a is 0

4.
Prime number theorem
–
In number theory, the prime number theorem describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée-Poussin in 1896 using ideas introduced by Bernhard Riemann, the first such distribution found is π ~ N/log, where π is the prime-counting function and log is the natural logarithm of N. This means that for large enough N, the probability that an integer not greater than N is prime is very close to 1 / log. Consequently, an integer with at most 2n digits is about half as likely to be prime as a random integer with at most n digits. For example, among the integers of at most 1000 digits, about one in 2300 is prime, whereas among positive integers of at most 2000 digits. In other words, the gap between consecutive prime numbers among the first N integers is roughly log. Let π be the function that gives the number of primes less than or equal to x. For example, π =4 because there are four prime numbers less than or equal to 10, using asymptotic notation this result can be restated as π ∼ x log x. This notation does not say anything about the limit of the difference of the two functions as x increases without bound, instead, the theorem states that x / log x approximates π in the sense that the relative error of this approximation approaches 0 as x increases without bound. For example, the 7017200000000000000♠2×1017th prime number is 7018851267738604819♠8512677386048191063, and log rounds to 7018796741875229174♠7967418752291744388, a relative error of about 6. 4%. The prime number theorem is equivalent to lim x → ∞ ϑ x = lim x → ∞ ψ x =1, where ϑ and ψ are the first. Based on the tables by Anton Felkel and Jurij Vega, Adrien-Marie Legendre conjectured in 1797 or 1798 that π is approximated by the function a /, where A and B are unspecified constants. In the second edition of his book on number theory he made a more precise conjecture. Carl Friedrich Gauss considered the question at age 15 or 16 in the year 1792 or 1793. In 1838 Peter Gustav Lejeune Dirichlet came up with his own approximating function, in two papers from 1848 and 1850, the Russian mathematician Pafnuty Chebyshev attempted to prove the asymptotic law of distribution of prime numbers. He was able to prove unconditionally that this ratio is bounded above, an important paper concerning the distribution of prime numbers was Riemanns 1859 memoir On the Number of Primes Less Than a Given Magnitude, the only paper he ever wrote on the subject. In particular, it is in paper of Riemann that the idea to apply methods of complex analysis to the study of the real function π originates

5.
Partition (number theory)
–
In number theory and combinatorics, a partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition, a summand in a partition is also called a part. The number of partitions of n is given by the function p. The notation λ ⊢ n means that λ is a partition of n, Partitions can be graphically visualized with Young diagrams or Ferrers diagrams. They occur in a number of branches of mathematics and physics, including the study of symmetric polynomials, the symmetric group and in group representation theory in general. For example, the partition 2 +2 +1 might instead be written as the tuple or in the more compact form where the superscript indicates the number of repetitions of a term. There are two common methods to represent partitions, as Ferrers diagrams, named after Norman Macleod Ferrers. Both have several possible conventions, here, we use English notation, with diagrams aligned in the upper-left corner. The partition 6 +4 +3 +1 of the positive number 14 can be represented by the diagram, The 14 circles are lined up in 4 rows. The diagrams for the 5 partitions of the number 4 are listed below, rather than representing a partition with dots, as in the Ferrers diagram, the Young diagram uses boxes or squares. As a type of shape made by adjacent squares joined together, by convention p =1, p =0 for n negative. The first few values of the function are,1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,490,627,792,1002,1255,1575,1958,2436,3010,3718,4565,5604. As of June 2013, the largest known prime number that counts a number of partitions is p, the generating function for p is given by, ∑ n =0 ∞ p x n = ∏ k =1 ∞. Expanding each factor on the side as a geometric series. The xn term in this product counts the number of ways to write n = a1 + 2a2 + 3a3 +, where each number i appears ai times. This is precisely the definition of a partition of n, so our product is the generating function. More generally, the function for the partitions of n into numbers from a set A can be found by taking only those terms in the product where k is an element of A. This result is due to Euler, the formulation of Eulers generating function is a special case of a q-Pochhammer symbol and is similar to the product formulation of many modular forms, and specifically the Dedekind eta function

6.
Pell number
–
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1,2,5,12, and 29. The numerators of the sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers, these numbers form a second infinite sequence that begins with 2,6,14,34. As with Pells equation, the name of the Pell numbers stems from Leonhard Eulers mistaken attribution of the equation, the Pell–Lucas numbers are also named after Édouard Lucas, who studied sequences defined by recurrences of this type, the Pell and companion Pell numbers are Lucas sequences. The Pell numbers are defined by the recurrence relation P n = {0 if n =0,1 if n =1,2 P n −1 + P n −2 otherwise. In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell number and the Pell number before that. The first few terms of the sequence are 0,1,2,5,12,29,70,169,408,985,2378,5741,13860, …. The Pell numbers can also be expressed by the closed form formula P n = n − n 22, a third definition is possible, from the matrix formula = n. Pell numbers arise historically and most notably in the rational approximation to √2. If two large integers x and y form a solution to the Pell equation x 2 −2 y 2 = ±1 and that is, the solutions have the form P n −1 + P n P n. The approximation 2 ≈577408 of this type was known to Indian mathematicians in the third or fourth century B. C, the Greek mathematicians of the fifth century B. C. also knew of this sequence of approximations, Plato refers to the numerators as rational diameters. In the 2nd century CE Theon of Smyrna used the term the side and these approximations can be derived from the continued fraction expansion of 2,2 =1 +12 +12 +12 +12 +12 + ⋱. As Knuth describes, the fact that Pell numbers approximate √2 allows them to be used for accurate rational approximations to an octagon with vertex coordinates. All vertices are equally distant from the origin, and form uniform angles around the origin. Alternatively, the points, and form approximate octagons in which the vertices are equally distant from the origin. A Pell prime is a Pell number that is prime, the first few Pell primes are 2,5,29,5741, …. The indices of these primes within the sequence of all Pell numbers are 2,3,5,11,13,29,41,53,59,89,97,101,167,181,191, … These indices are all themselves prime. As with the Fibonacci numbers, a Pell number Pn can only be prime if n itself is prime, the only Pell numbers that are squares, cubes, or any higher power of an integer are 0,1, and 169 =132. However, despite having so few squares or other powers, Pell numbers have a connection to square triangular numbers

7.
Megaprime
–
A megaprime is a prime number with at least one million decimal digits. As of September 2016,208 megaprimes are known, including 192 definitely primes and 16 probable primes. The first to be found was the Mersenne prime 26972593−1 with 2,098,960 digits, discovered in 1999 by Nayan Hajratwala, the term bevaprime has been proposed as a term for a prime with at least 1,000,000,000 digits. In fact, almost all primes are megaprimes, as the amount of primes less than a million digits is finite. However, the vast majority of known primes are not megaprimes, entries labelled Prime have been proved prime, those labelled PRP have not. All numbers from 10999999 through 10999999 +593498 are known to be composite, and there is a high probability 10999999 +593499

8.
Pierpont prime
–
A Pierpont prime is a prime number of the form 2 u 3 v +1 for some nonnegative integers u and v. That is, they are the prime numbers p for which p −1 is 3-smooth. They are named after the mathematician James Pierpont, who introduced them in the study of regular polygons that can be constructed using conic sections. It is possible to prove that if v =0 and u >0, then u must be a power of 2, if v is positive then u must also be positive, and the Pierpont prime is of the form 6k +1. Empirically, the Pierpont primes do not seem to be rare or sparsely distributed. There are 36 Pierpont primes less than 106,59 less than 109,151 less than 1020, there are few restrictions from algebraic factorisations on the Pierpont primes, so there are no requirements like the Mersenne prime condition that the exponent must be prime. As there are Θ numbers of the form in this range. Andrew M. Gleason made this explicit, conjecturing there are infinitely many Pierpont primes. According to Gleasons conjecture there are Θ Pierpont primes smaller than N, when 2 u >3 v, the primality of 2 u 3 v +1 can be tested by Proths theorem. As part of the ongoing search for factors of Fermat numbers. The following table gives values of m, k, and n such that k ⋅2 n +1 divides 22 m +1, the left-hand side is a Pierpont prime when k is a power of 3, the right-hand side is a Fermat number. As of 2017, the largest known Pierpont prime is 3 ×210829346 +1, whose primality was discovered by Sai Yik Tang, in the mathematics of paper folding, the Huzita axioms define six of the seven types of fold possible. It has been shown that these folds are sufficient to allow the construction of the points that solve any cubic equation. It follows that they allow any regular polygon of N sides to be formed, as long as N >3 and of the form 2m3nρ and this is the same class of regular polygons as those that can be constructed with a compass, straightedge, and angle-trisector. Regular polygons which can be constructed with compass and straightedge are the special case where n =0 and ρ is a product of distinct Fermat primes, themselves a subset of Pierpont primes. In 1895, James Pierpont studied the same class of regular polygons, Pierpont generalized compass and straightedge constructions in a different way, by adding the ability to draw conic sections whose coefficients come from previously constructed points. As he showed, the regular N-gons that can be constructed with these operations are the ones such that the totient of N is 3-smooth. Since the totient of a prime is formed by subtracting one from it, however, Pierpont did not describe the form of the composite numbers with 3-smooth totients. As Gleason later showed, these numbers are exactly the ones of the form 2m3nρ given above, the smallest prime that is not a Pierpont prime is 11, therefore, the hendecagon is the smallest regular polygon that cannot be constructed with compass, straightedge and angle trisector

9.
Motzkin number
–
In mathematics, a Motzkin number for a given number n is the number of different ways of drawing non-intersecting chords between n points on a circle. The Motzkin numbers are named after Theodore Motzkin, and have diverse applications in geometry, combinatorics. The following figure shows the 9 ways to draw non-intersecting chords between 4 points on a circle, the following figure shows the 21 ways to draw non-intersecting chords between 5 points on a circle. Motzkin numbers can be expressed in terms of binomial coefficients and Catalan numbers, a Motzkin prime is a Motzkin number that is prime. Guibert, Pergola & Pinzani showed that vexillary involutions are enumerated by Motzkin numbers