1.
Dodecahedron
–
In geometry, a dodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the dodecahedron, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form, all of these have icosahedral symmetry, order 120. The pyritohedron is a pentagonal dodecahedron, having the same topology as the regular one. The rhombic dodecahedron, seen as a case of the pyritohedron has octahedral symmetry. The elongated dodecahedron and trapezo-rhombic dodecahedron variations, along with the rhombic dodecahedra are space-filling, there are a large number of other dodecahedra. The convex regular dodecahedron is one of the five regular Platonic solids, the dual polyhedron is the regular icosahedron, having five equilateral triangles around each vertex. Like the regular dodecahedron, it has twelve pentagonal faces. However, the pentagons are not constrained to be regular, and its 30 edges are divided into two sets – containing 24 and 6 edges of the same length. The only axes of symmetry are three mutually perpendicular twofold axes and four threefold axes. Note that the regular dodecahedron can occur as a shape for quasicrystals with icosahedral symmetry. Its name comes from one of the two common crystal habits shown by pyrite, the one being the cube. The coordinates of the eight vertices of the cube are, The coordinates of the 12 vertices of the cross-edges are. When h =1, the six cross-edges degenerate to points, when h =0, the cross-edges are absorbed in the facets of the cube, and the pyritohedron reduces to a cube. When h = √5 − 1/2, the inverse of the golden ratio, a reflected pyritohedron is made by swapping the nonzero coordinates above. The two pyritohedra can be superimposed to give the compound of two dodecahedra as seen in the image here, the regular dodecahedron represents a special intermediate case where all edges and angles are equal. A tetartoid is a dodecahedron with chiral tetrahedral symmetry, like the regular dodecahedron, it has twelve identical pentagonal faces, with three meeting in each of the 20 vertices. However, the pentagons are not regular and the figure has no fivefold symmetry axes, although regular dodecahedra do not exist in crystals, the tetartoid form does

2.
Tetrahedron
–
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra, the tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a polygon base. In the case of a tetrahedron the base is a triangle, like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. For any tetrahedron there exists a sphere on which all four vertices lie, a regular tetrahedron is one in which all four faces are equilateral triangles. It is one of the five regular Platonic solids, which have known since antiquity. In a regular tetrahedron, not only are all its faces the same size and shape, regular tetrahedra alone do not tessellate, but if alternated with regular octahedra they form the alternated cubic honeycomb, which is a tessellation. The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron, the compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula. This form has Coxeter diagram and Schläfli symbol h, the tetrahedron in this case has edge length 2√2. Inverting these coordinates generates the dual tetrahedron, and the together form the stellated octahedron. In other words, if C is the centroid of the base and this follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other. The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron, the symmetries of a regular tetrahedron correspond to half of those of a cube, those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by point inversion, the regular tetrahedron has 24 isometries, forming the symmetry group Td, isomorphic to the symmetric group, S4. The first corresponds to the A2 Coxeter plane, the two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these intersects the tetrahedron the resulting cross section is a rectangle. When the intersecting plane is one of the edges the rectangle is long. When halfway between the two edges the intersection is a square, the aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly, if the tetrahedron is bisected on this plane, both halves become wedges

3.
Octahedron
–
In geometry, an octahedron is a polyhedron with eight faces, twelve edges, and six vertices. A regular octahedron is a Platonic solid composed of eight equilateral triangles, a regular octahedron is the dual polyhedron of a cube. It is a square bipyramid in any of three orthogonal orientations and it is also a triangular antiprism in any of four orientations. An octahedron is the case of the more general concept of a cross polytope. A regular octahedron is a 3-ball in the Manhattan metric, the second and third correspond to the B2 and A2 Coxeter planes. The octahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. An octahedron with edge length √2 can be placed with its center at the origin and its vertices on the coordinate axes, the Cartesian coordinates of the vertices are then. In an x–y–z Cartesian coordinate system, the octahedron with center coordinates, additionally the inertia tensor of the stretched octahedron is I =. These reduce to the equations for the regular octahedron when x m = y m = z m = a 22, the interior of the compound of two dual tetrahedra is an octahedron, and this compound, called the stella octangula, is its first and only stellation. Correspondingly, an octahedron is the result of cutting off from a regular tetrahedron. One can also divide the edges of an octahedron in the ratio of the mean to define the vertices of an icosahedron. There are five octahedra that define any given icosahedron in this fashion, octahedra and tetrahedra can be alternated to form a vertex, edge, and face-uniform tessellation of space, called the octet truss by Buckminster Fuller. This is the only such tiling save the regular tessellation of cubes, another is a tessellation of octahedra and cuboctahedra. The octahedron is unique among the Platonic solids in having a number of faces meeting at each vertex. Consequently, it is the member of that group to possess mirror planes that do not pass through any of the faces. Using the standard nomenclature for Johnson solids, an octahedron would be called a square bipyramid, truncation of two opposite vertices results in a square bifrustum. The octahedron is 4-connected, meaning that it takes the removal of four vertices to disconnect the remaining vertices and it is one of only four 4-connected simplicial well-covered polyhedra, meaning that all of the maximal independent sets of its vertices have the same size

4.
Polyhedron
–
In geometry, a polyhedron is a solid in three dimensions with flat polygonal faces, straight edges and sharp corners or vertices. The word polyhedron comes from the Classical Greek πολύεδρον, as poly- + -hedron, a convex polyhedron is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra, a polyhedron is a 3-dimensional example of the more general polytope in any number of dimensions. Convex polyhedra are well-defined, with several equivalent standard definitions, however, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of polyhedron have been given within particular contexts, some more rigorous than others, some of these definitions exclude shapes that have often been counted as polyhedra or include shapes that are often not considered as valid polyhedra. As Branko Grünbaum observed, The Original Sin in the theory of polyhedra goes back to Euclid, the writers failed to define what are the polyhedra. Nevertheless, there is agreement that a polyhedron is a solid or surface that can be described by its vertices, edges, faces. Natural refinements of this definition require the solid to be bounded, to have a connected interior, and possibly also to have a connected boundary. However, the polyhedra defined in this way do not include the self-crossing star polyhedra, their faces may not form simple polygons, definitions based on the idea of a bounding surface rather than a solid are also common. If a planar part of such a surface is not itself a convex polygon, ORourke requires it to be subdivided into smaller convex polygons, cromwell gives a similar definition but without the restriction of three edges per vertex. Again, this type of definition does not encompass the self-crossing polyhedra, however, there exist topological polyhedra that cannot be realized as acoptic polyhedra. One modern approach is based on the theory of abstract polyhedra and these can be defined as partially ordered sets whose elements are the vertices, edges, and faces of a polyhedron. A vertex or edge element is less than an edge or face element when the vertex or edge is part of the edge or face, additionally, one may include a special bottom element of this partial order and a top element representing the whole polyhedron. However, these requirements are relaxed, to instead require only that the sections between elements two levels apart from line segments. Geometric polyhedra, defined in other ways, can be described abstractly in this way, a realization of an abstract polyhedron is generally taken to be a mapping from the vertices of the abstract polyhedron to geometric points, such that the points of each face are coplanar. A geometric polyhedron can then be defined as a realization of an abstract polyhedron, realizations that forgo the requirement of planarity, that impose additional requirements of symmetry, or that map the vertices to higher dimensional spaces have also been considered. Unlike the solid-based and surface-based definitions, this perfectly well for star polyhedra. However, without restrictions, this definition allows degenerate or unfaithful polyhedra

5.
Hosohedron
–
In geometry, an n-gonal hosohedron is a tessellation of lunes on a spherical surface, such that each lune shares the same two polar opposite vertices. A regular n-gonal hosohedron has Schläfli symbol, with each spherical lune having internal angle 2π/n radians, the restriction m ≥3 enforces that the polygonal faces must have at least three sides. When considering polyhedra as a tiling, this restriction may be relaxed, since digons can be represented as spherical lunes. Allowing m =2 admits a new class of regular polyhedra. On a spherical surface, the polyhedron is represented as n abutting lunes, all these lunes share two common vertices. The digonal faces of a 2n-hosohedron, represents the fundamental domains of symmetry in three dimensions, Cnv, order 2n. The reflection domains can be shown as alternately colored lunes as mirror images, bisecting the lunes into two spherical triangles creates bipyramids and define dihedral symmetry Dnh, order 4n. The tetragonal hosohedron is topologically equivalent to the bicylinder Steinmetz solid, the dual of the n-gonal hosohedron is the n-gonal dihedron. The polyhedron is self-dual, and is both a hosohedron and a dihedron, a hosohedron may be modified in the same manner as the other polyhedra to produce a truncated variation. The truncated n-gonal hosohedron is the n-gonal prism, in the limit the hosohedron becomes an apeirogonal hosohedron as a 2-dimensional tessellation, Multidimensional analogues in general are called hosotopes. A regular hosotope with Schläfli symbol has two vertices, each with a vertex figure, the two-dimensional hosotope, is a digon. The term “hosohedron” was coined by H. S. M, Coxeter, and possibly derives from the Greek ὅσος “as many”, the idea being that a hosohedron can have “as many faces as desired”. Polyhedron Polytope McMullen, Peter, Schulte, Egon, Abstract Regular Polytopes, Cambridge University Press, ISBN 0-521-81496-0 Coxeter, H. S. M, ISBN 0-486-61480-8 Weisstein, Eric W. Hosohedron

6.
Enneahedron
–
In geometry, an enneahedron is a polyhedron with nine faces. There are 2606 types of convex enneahedron, each having a different pattern of vertex, edge, the most familiar enneahedra are the octagonal pyramid and the heptagonal prism. The heptagonal prism is a polyhedron, with two regular heptagon faces and seven square faces. The octagonal pyramid has eight triangular faces around a regular octagonal base. Two more enneahedra are also found among the Johnson solids, the square pyramid. The three-dimensional associahedron, a near-miss Johnson solid with six pentagonal faces, five Johnson solids have enneahedral duals, the triangular cupola, gyroelongated square pyramid, self-dual elongated square pyramid, triaugmented triangular prism, and tridiminished icosahedron. Another enneahedron is the diminished trapezohedron with a base, and 4 kite and 4 triangle faces. The Herschel graph also represents the vertices and edges of an enneahedron and it is the simplest polyhedron without a Hamiltonian cycle, the only enneahedron in which all faces have the same number of edges, and one of only three bipartite enneahedra. The two smallest isospectral polyhedral graphs are enneahedra with eight vertices each, like the rhombic dodecahedron itself, this shape can be used to tessellate three-dimensional space. An elongated form of shape that still tiles space can be seen atop the rear side towers of the 12th-century Romanesque Basilica of Our Lady. The towers themselves, with their four pentagonal sides, four roof facets, more generally, Goldberg found at least 40 topologically distinct space-filling enneahedra. There are 2606 topologically distinct convex enneahedra, excluding mirror images and these can be divided into subsets of 8,74,296,633,768,558,219,50, with 7 to 14 vertices respectively. A table of numbers, together with a detailed description of the nine-vertex enneahedra, was first published in the 1870s by Thomas Kirkman. Enumeration of Polyhedra by Steven Dutch Weisstein, Eric W. Nonahedron

7.
Rhombic triacontahedron
–
In geometry, the rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types and it is a Catalan solid, and the dual polyhedron of the icosidodecahedron. The ratio of the diagonal to the short diagonal of each face is exactly equal to the golden ratio, φ, so that the acute angles on each face measure 2 tan−1 = tan−1. A rhombus so obtained is called a golden rhombus, being the dual of an Archimedean solid, the rhombic triacontahedron is face-transitive, meaning the symmetry group of the solid acts transitively on the set of faces. This means that for any two faces, A and B, there is a rotation or reflection of the solid that leaves it occupying the region of space while moving face A to face B. The rhombic triacontahedron is also interesting in that its vertices include the arrangement of four Platonic solids and it contains ten tetrahedra, five cubes, an icosahedron and a dodecahedron. The centers of the faces contain five octahedra, the plane of each face is perpendicular to the center of the rhombic triacontahedron, and is located at the same distance. Using one of the three golden rectangles drawn into the inscribed icosahedron we can easily deduce the distance between the center of the solid and the center of its rhombic face. The rhombic triacontahedron can be dissected into 20 golden rhombohedra,10 acute ones and 10 flat ones, danish designer Holger Strøm used the rhombic triacontahedron as a basis for the design of his buildable lamp IQ-light. Woodworker Jane Kostick builds boxes in the shape of a rhombic triacontahedron, the simple construction is based on the less than obvious relationship between the rhombic triacontahedron and the cube. Roger von Oechs Ball of Whacks comes in the shape of a rhombic triacontahedron, the rhombic triacontahedron is used as the d30 thirty-sided die, sometimes useful in some roleplaying games or other places. The rhombic triacontahedron has three positions, two centered on vertices, and one mid-edge. Embedded in projection 10 are the fat rhombus and skinny rhombus which tile together to produce the non-periodic tessellation often referred to as Penrose tiling, the rhombic triacontahedron has over 227 stellations. This polyhedron is a part of a sequence of rhombic polyhedra, the cube can be seen as a rhombic hexahedron where the rhombi are also rectangles. The rhombic triacontahedron forms the hull of one projection of a 6-cube to 3 dimensions. Truncated rhombic triacontahedron Rhombille tiling Golden rhombus Williams, Robert, the Geometrical Foundation of Natural Structure, A Source Book of Design

8.
Face (geometry)
–
In solid geometry, a face is a flat surface that forms part of the boundary of a solid object, a three-dimensional solid bounded exclusively by flat faces is a polyhedron. In more technical treatments of the geometry of polyhedra and higher-dimensional polytopes, in elementary geometry, a face is a polygon on the boundary of a polyhedron. Other names for a polygonal face include side of a polyhedron, for example, any of the six squares that bound a cube is a face of the cube. Sometimes face is used to refer to the 2-dimensional features of a 4-polytope. With this meaning, the 4-dimensional tesseract has 24 square faces, some other polygons, which are not faces, are also important for polyhedra and tessellations. These include Petrie polygons, vertex figures and facets, any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Eulers polyhedron formula, thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, in higher-dimensional geometry the faces of a polytope are features of all dimensions. A face of dimension k is called a k-face, for example, the polygonal faces of an ordinary polyhedron are 2-faces. In set theory, the set of faces of a polytope includes the polytope itself, for any n-polytope, −1 ≤ k ≤ n. For example, with meaning, the faces of a cube include the empty set, its vertices, edges and squares. Formally, a face of a polytope P is the intersection of P with any closed halfspace whose boundary is disjoint from the interior of P, from this definition it follows that the set of faces of a polytope includes the polytope itself and the empty set. In other areas of mathematics, such as the theories of abstract polytopes and star polytopes, abstract theory still requires that the set of faces include the polytope itself and the empty set. A cell is an element of a 4-dimensional polytope or 3-dimensional tessellation. Cells are facets for 4-polytopes and 3-honeycombs, examples, In higher-dimensional geometry, the facets of a n-polytope are the -faces of dimension one less than the polytope itself. A polytope is bounded by its facets, for example, The facets of a line segment are its 0-faces or vertices. The facets of a polygon are its 1-faces or edges, the facets of a polyhedron or plane tiling are its 2-faces. The facets of a 4D polytope or 3-honeycomb are its 3-faces, the facets of a 5D polytope or 4-honeycomb are its 4-faces

9.
Octadecahedron
–
In geometry, an octadecahedron is a polyhedron with 18 faces. No octadecahedron is regular, hence, the name does not commonly refer to one specific polyhedron, in chemistry, the octadecahedron commonly refers to a specific structure with C2v symmetry, the edge-contracted icosahedron, formed from a regular icosahedron with one edge contracted. It is the shape of the closo-boranate ion 2−, there are 107,854,282,197,058 topologically distinct convex octadecahedra, excluding mirror images, having at least 11 vertices. The most familiar octadecahedra are the pyramid, hexadecagonal prism. The hexadecagonal prism and the octagonal antiprism are uniform polyhedra, with regular bases, four more octadecahedra are also found among the Johnson solids, the square gyrobicupola, the square orthobicupola, the elongated square cupola, and the sphenomegacorona. In addition, some uniform polyhedra are also octadecahedra