1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

2.
Cardinality
–
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = contains 3 elements, there are two approaches to cardinality – one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is called its size, when no confusion with other notions of size is possible. The cardinality of a set A is usually denoted | A |, with a bar on each side, this is the same notation as absolute value. Alternatively, the cardinality of a set A may be denoted by n, A, card, while the cardinality of a finite set is just the number of its elements, extending the notion to infinite sets usually starts with defining the notion of comparison of arbitrary sets. Two sets A and B have the same cardinality if there exists a bijection, that is, such sets are said to be equipotent, equipollent, or equinumerous. This relationship can also be denoted A≈B or A~B, for example, the set E = of non-negative even numbers has the same cardinality as the set N = of natural numbers, since the function f = 2n is a bijection from N to E. A has cardinality less than or equal to the cardinality of B if there exists a function from A into B. A has cardinality less than the cardinality of B if there is an injective function. If | A | ≤ | B | and | B | ≤ | A | then | A | = | B |, the axiom of choice is equivalent to the statement that | A | ≤ | B | or | B | ≤ | A | for every A, B. That is, the cardinality of a set was not defined as an object itself. However, such an object can be defined as follows, the relation of having the same cardinality is called equinumerosity, and this is an equivalence relation on the class of all sets. The equivalence class of a set A under this relation then consists of all sets which have the same cardinality as A. There are two ways to define the cardinality of a set, The cardinality of a set A is defined as its class under equinumerosity. A representative set is designated for each equivalence class, the most common choice is the initial ordinal in that class. This is usually taken as the definition of number in axiomatic set theory. Assuming AC, the cardinalities of the sets are denoted ℵ0 < ℵ1 < ℵ2 < …. For each ordinal α, ℵ α +1 is the least cardinal number greater than ℵ α

3.
Isomorphism
–
In mathematics, an isomorphism is a homomorphism or morphism that admits an inverse. Two mathematical objects are isomorphic if an isomorphism exists between them, an automorphism is an isomorphism whose source and target coincide. For most algebraic structures, including groups and rings, a homomorphism is an isomorphism if, in topology, where the morphisms are continuous functions, isomorphisms are also called homeomorphisms or bicontinuous functions. In mathematical analysis, where the morphisms are functions, isomorphisms are also called diffeomorphisms. A canonical isomorphism is a map that is an isomorphism. Two objects are said to be isomorphic if there is a canonical isomorphism between them. Isomorphisms are formalized using category theory, let R + be the multiplicative group of positive real numbers, and let R be the additive group of real numbers. The logarithm function log, R + → R satisfies log = log x + log y for all x, y ∈ R +, so it is a group homomorphism. The exponential function exp, R → R + satisfies exp = for all x, y ∈ R, the identities log exp x = x and exp log y = y show that log and exp are inverses of each other. Since log is a homomorphism that has an inverse that is also a homomorphism, because log is an isomorphism, it translates multiplication of positive real numbers into addition of real numbers. This facility makes it possible to real numbers using a ruler. Consider the group, the integers from 0 to 5 with addition modulo 6 and these structures are isomorphic under addition, if you identify them using the following scheme, ↦0 ↦1 ↦2 ↦3 ↦4 ↦5 or in general ↦ mod 6. For example, + =, which translates in the system as 1 +3 =4. Even though these two groups look different in that the sets contain different elements, they are indeed isomorphic, more generally, the direct product of two cyclic groups Z m and Z n is isomorphic to if and only if m and n are coprime. For example, R is an ordering ≤ and S an ordering ⊑, such an isomorphism is called an order isomorphism or an isotone isomorphism. If X = Y, then this is a relation-preserving automorphism, in a concrete category, such as the category of topological spaces or categories of algebraic objects like groups, rings, and modules, an isomorphism must be bijective on the underlying sets. In algebraic categories, an isomorphism is the same as a homomorphism which is bijective on underlying sets, in abstract algebra, two basic isomorphisms are defined, Group isomorphism, an isomorphism between groups Ring isomorphism, an isomorphism between rings. Just as the automorphisms of an algebraic structure form a group, letting a particular isomorphism identify the two structures turns this heap into a group

4.
Structure
–
Structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as biological organisms, abstract structures include data structures in computer science and musical form. Types of structure include a hierarchy, a network featuring many-to-many links, buildings, aircraft, skeletons, anthills, beaver dams and salt domes are all examples of load-bearing structures. The results of construction are divided into buildings and non-building structures, the effects of loads on physical structures are determined through structural analysis, which is one of the tasks of structural engineering. The structural elements can be classified as one-dimensional, two-dimensional, or three-dimensional, the latter was the main option available to early structures such as Chichen Itza. Two-dimensional elements with a third dimension have little of either. The structure elements are combined in structural systems, the majority of everyday load-bearing structures are section-active structures like frames, which are primarily composed of one-dimensional structures. In biology, structures exist at all levels of organization, ranging hierarchically from the atomic and molecular to the cellular, tissue, organ, organismic, population, usually, a higher-level structure is composed of multiple copies of a lower-level structure. Structural biology is concerned with the structure of macromolecules, particularly proteins. The function of molecules is determined by their shape as well as their composition. Protein structure has a four-level hierarchy, the primary structure is the sequence of amino acids that make it up. It has a backbone made up of a repeated sequence of a nitrogen. The secondary structure consists of repeated patterns determined by hydrogen bonding, the two basic types are the α-helix and the β-pleated sheet. The tertiary structure is a back and forth bending of the chain. Chemical structure refers to both molecular geometry and electronic structure, the structure can be represented by a variety of diagrams called structural formulas. Lewis structures use a dot notation to represent the valence electrons for an atom, bonds between atoms can be represented by lines with one line for each pair of electrons that is shared. In a simplified version of such a diagram, called a skeletal formula, only carbon-carbon bonds, atoms in a crystal have a structure that involves repetition of a basic unit called a unit cell. The atoms can be modeled as points on a lattice, and one can explore the effect of symmetry operations that include rotations about a point, reflections about a symmetry planes, and translations