1.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space

2.
Dodecahedron
–
In geometry, a dodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the dodecahedron, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form, all of these have icosahedral symmetry, order 120. The pyritohedron is a pentagonal dodecahedron, having the same topology as the regular one. The rhombic dodecahedron, seen as a case of the pyritohedron has octahedral symmetry. The elongated dodecahedron and trapezo-rhombic dodecahedron variations, along with the rhombic dodecahedra are space-filling, there are a large number of other dodecahedra. The convex regular dodecahedron is one of the five regular Platonic solids, the dual polyhedron is the regular icosahedron, having five equilateral triangles around each vertex. Like the regular dodecahedron, it has twelve pentagonal faces. However, the pentagons are not constrained to be regular, and its 30 edges are divided into two sets – containing 24 and 6 edges of the same length. The only axes of symmetry are three mutually perpendicular twofold axes and four threefold axes. Note that the regular dodecahedron can occur as a shape for quasicrystals with icosahedral symmetry. Its name comes from one of the two common crystal habits shown by pyrite, the one being the cube. The coordinates of the eight vertices of the cube are, The coordinates of the 12 vertices of the cross-edges are. When h =1, the six cross-edges degenerate to points, when h =0, the cross-edges are absorbed in the facets of the cube, and the pyritohedron reduces to a cube. When h = √5 − 1/2, the inverse of the golden ratio, a reflected pyritohedron is made by swapping the nonzero coordinates above. The two pyritohedra can be superimposed to give the compound of two dodecahedra as seen in the image here, the regular dodecahedron represents a special intermediate case where all edges and angles are equal. A tetartoid is a dodecahedron with chiral tetrahedral symmetry, like the regular dodecahedron, it has twelve identical pentagonal faces, with three meeting in each of the 20 vertices. However, the pentagons are not regular and the figure has no fivefold symmetry axes, although regular dodecahedra do not exist in crystals, the tetartoid form does

3.
Pentagon
–
In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting, a self-intersecting regular pentagon is called a pentagram. A regular pentagon has Schläfli symbol and interior angles are 108°, a regular pentagon has five lines of reflectional symmetry, and rotational symmetry of order 5. The diagonals of a regular pentagon are in the golden ratio to its sides. The area of a regular convex pentagon with side length t is given by A = t 225 +1054 =5 t 2 tan 4 ≈1.720 t 2. A pentagram or pentangle is a regular star pentagon and its sides form the diagonals of a regular convex pentagon – in this arrangement the sides of the two pentagons are in the golden ratio. The area of any polygon is, A =12 P r where P is the perimeter of the polygon. Substituting the regular pentagons values for P and r gives the formula A =12 ×5 t × t tan 2 =5 t 2 tan 4 with side length t, like every regular convex polygon, the regular convex pentagon has an inscribed circle. The apothem, which is the r of the inscribed circle. Like every regular polygon, the regular convex pentagon has a circumscribed circle. For a regular pentagon with successive vertices A, B, C, D, E, the regular pentagon is constructible with compass and straightedge, as 5 is a Fermat prime. A variety of methods are known for constructing a regular pentagon, one method to construct a regular pentagon in a given circle is described by Richmond and further discussed in Cromwells Polyhedra. The top panel shows the construction used in Richmonds method to create the side of the inscribed pentagon, the circle defining the pentagon has unit radius. Its center is located at point C and a midpoint M is marked halfway along its radius and this point is joined to the periphery vertically above the center at point D. Angle CMD is bisected, and the bisector intersects the axis at point Q. A horizontal line through Q intersects the circle at point P, to determine the length of this side, the two right triangles DCM and QCM are depicted below the circle. Using Pythagoras theorem and two sides, the hypotenuse of the triangle is found as 5 /2

4.
Small stellated dodecahedron
–
In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol. It is one of four regular polyhedra. It is composed of 12 pentagrammic faces, with five meeting at each vertex. It shares the vertex arrangement as the convex regular icosahedron. It also shares the same edge arrangement with the great icosahedron and it is the second of four stellations of the dodecahedron. It is central to two lithographs by M. C and its convex hull is the regular convex icosahedron. It also shares its edges with the great icosahedron, compound of small stellated dodecahedron and great dodecahedron Small stellated dodecahedron programing Wenninger, Magnus. Weber, Matthias, Keplers small stellated dodecahedron as a Riemann surface,220, 167–182 Eric W. Weisstein, Small stellated dodecahedron at MathWorld

5.
Cambridge University Press
–
Cambridge University Press is the publishing business of the University of Cambridge. Granted letters patent by Henry VIII in 1534, it is the worlds oldest publishing house and it also holds letters patent as the Queens Printer. The Presss mission is To further the Universitys mission by disseminating knowledge in the pursuit of education, learning, Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. With a global presence, publishing hubs, and offices in more than 40 countries. Its publishing includes journals, monographs, reference works, textbooks. Cambridge University Press is an enterprise that transfers part of its annual surplus back to the university. Cambridge University Press is both the oldest publishing house in the world and the oldest university press and it originated from Letters Patent granted to the University of Cambridge by Henry VIII in 1534, and has been producing books continuously since the first University Press book was printed. Cambridge is one of the two privileged presses, authors published by Cambridge have included John Milton, William Harvey, Isaac Newton, Bertrand Russell, and Stephen Hawking. In 1591, Thomass successor, John Legate, printed the first Cambridge Bible, the London Stationers objected strenuously, claiming that they had the monopoly on Bible printing. The universitys response was to point out the provision in its charter to print all manner of books. In July 1697 the Duke of Somerset made a loan of £200 to the university towards the house and presse and James Halman, Registrary of the University. It was in Bentleys time, in 1698, that a body of scholars was appointed to be responsible to the university for the Presss affairs. The Press Syndicates publishing committee still meets regularly, and its role still includes the review, John Baskerville became University Printer in the mid-eighteenth century. Baskervilles concern was the production of the finest possible books using his own type-design, a technological breakthrough was badly needed, and it came when Lord Stanhope perfected the making of stereotype plates. This involved making a mould of the surface of a page of type. The Press was the first to use this technique, and in 1805 produced the technically successful, under the stewardship of C. J. Clay, who was University Printer from 1854 to 1882, the Press increased the size and scale of its academic and educational publishing operation. An important factor in this increase was the inauguration of its list of schoolbooks, during Clays administration, the Press also undertook a sizable co-publishing venture with Oxford, the Revised Version of the Bible, which was begun in 1870 and completed in 1885. It was Wright who devised the plan for one of the most distinctive Cambridge contributions to publishing—the Cambridge Histories, the Cambridge Modern History was published between 1902 and 1912

6.
Uniform polyhedron
–
A uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, Uniform polyhedra may be regular, quasi-regular or semi-regular. The faces and vertices need not be convex, so many of the uniform polyhedra are also star polyhedra, there are two infinite classes of uniform polyhedra together with 75 others. Dual polyhedra to uniform polyhedra are face-transitive and have regular vertex figures, the dual of a regular polyhedron is regular, while the dual of an Archimedean solid is a Catalan solid. The concept of uniform polyhedron is a case of the concept of uniform polytope. Coxeter, Longuet-Higgins & Miller define uniform polyhedra to be vertex-transitive polyhedra with regular faces, by a polygon they implicitly mean a polygon in 3-dimensional Euclidean space, these are allowed to be non-convex and to intersect each other. There are some generalizations of the concept of a uniform polyhedron, if the connectedness assumption is dropped, then we get uniform compounds, which can be split as a union of polyhedra, such as the compound of 5 cubes. If we drop the condition that the realization of the polyhedron is non-degenerate and these require a more general definition of polyhedra. Some of the ways they can be degenerate are as follows, some polyhedra have faces that are hidden, in the sense that no points of their interior can be seen from the outside. These are usually not counted as uniform polyhedra, some polyhedra have multiple edges and their faces are the faces of two or more polyhedra, though these are not compounds in the previous sense since the polyhedra share edges. There are some non-orientable polyhedra that have double covers satisfying the definition of a uniform polyhedron, there double covers have doubled faces, edges and vertices. They are usually not counted as uniform polyhedra, there are several polyhedra with doubled faces produced by Wythoffs construction. Most authors do not allow doubled faces and remove them as part of the construction, skillings figure has the property that it has double edges but its faces cannot be written as a union of two uniform polyhedra. Regular convex polyhedra, The Platonic solids date back to the classical Greeks and were studied by the Pythagoreans, Plato, Theaetetus, Timaeus of Locri, the Etruscans discovered the regular dodecahedron before 500 BC. Nonregular uniform convex polyhedra, The cuboctahedron was known by Plato, Archimedes discovered all of the 13 Archimedean solids. His original book on the subject was lost, but Pappus of Alexandria mentioned Archimedes listed 13 polyhedra, piero della Francesca rediscovered the five truncation of the Platonic solids, truncated tetrahedron, truncated octahedron, truncated cube, truncated dodecahedron, and truncated icosahedron. Luca Pacioli republished Francescas work in De divina proportione in 1509, adding the rhombicuboctahedron, calling it a icosihexahedron for its 26 faces, which was drawn by Leonardo da Vinci. Johannes Kepler was the first to publish the complete list of Archimedean solids, in 1619, regular star polyhedra, Kepler discovered two of the regular Kepler–Poinsot polyhedra and Louis Poinsot discovered the other two

7.
Magnus Wenninger
–
Father Magnus J. Wenninger OSB was an American mathematician who worked on constructing polyhedron models, and wrote the first book on their construction. Born to German immigrants in Park Falls, Wisconsin, Joseph Wenninger always knew he was going to be a priest. From an early age, it was understood that his brother Heinie would take after their father and become a baker, the ad was for a preparatory school in Collegeville, Minnesota, associated with the Benedictine St. John’s University. While admitting to feeling homesick at first, Wenninger quickly made friends and, after a year, knew that this was where he needed to be. He was a student in a section of the school that functioned as a “minor seminary” – later moving on into St. John’s where he studied philosophy and theology. Wenninger became a Benedictine monk, he took on his monastic name Magnus, at the start of his career, Wenninger did not set out on a path one might expect would lead to his becoming the great polyhedronist that he is known as today. Rather, a few chance happenings and seemingly minor decisions shaped a course for Wenninger that led to his groundbreaking studies, shortly after becoming a priest, Wenninger’s Abbot informed him that their order was starting up a school in the Bahamas. It was decided that Wenninger would be assigned to teach at that school, in order to do this, it was necessary that he get a masters degree. Wenninger was sent to the University of Ottawa, in Canada, there he studied symbolic logic under Thomas Greenwood of the philosophy department. His thesis title was “The Concept of Number According to Roger Bacon, after completing his degree, Wenninger went to the school in the Bahamas, where he was asked by the headmaster to choose between teaching English or math. Wenninger chose math, since it seemed to be more in line with the topic of his MA thesis, however, not having taken many math courses in college, Wenninger admits to being able to teach by staying a few pages ahead of the students. He taught Algebra, Euclidean Geometry, Trigonometry and Analytic Geometry, after ten years of teaching, Wenninger felt he was becoming a bit stale. At the suggestion of his headmaster, Wenninger attended the Columbia Teachers College in summer sessions over a period in the late fifties. It was here that his interest in the “New Math” was formed, Wenninger died at the age of 97, at St Johns Abbey on Friday, February 17,2017. Wenninger’s first publication on the topic of polyhedra was the entitled, “Polyhedron Models for the Classroom”. He wrote to H. S. M. Coxeter and received a copy of Uniform polyhedra which had a complete list of all 75 uniform polyhedra, after this, he spent a great deal of time building various polyhedra. He made 65 of them and had them on display in his classroom, at this point, Wenninger decided to contact a publisher to see if there was any interest in a book. He had the models photographed and wrote the text, which he sent off to Cambridge University Press in London

8.
Uniform star polyhedron
–
In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting, each polyhedron can contain either star polygon faces, star polygon vertex figures or both. The complete set of 57 nonprismatic uniform star polyhedra includes the 4 regular ones, called the Kepler–Poinsot polyhedra,5 quasiregular ones, there are also two infinite sets of uniform star prisms and uniform star antiprisms. The nonconvex forms are constructed from Schwarz triangles, all the uniform polyhedra are listed below by their symmetry groups and subgrouped by their vertex arrangements. Regular polyhedra are labeled by their Schläfli symbol, other nonregular uniform polyhedra are listed with their vertex configuration or their Uniform polyhedron index U. Note, For nonconvex forms below an additional descriptor Nonuniform is used when the convex hull vertex arrangement has same topology as one of these, for example an nonuniform cantellated form may have rectangles created in place of the edges rather than squares. There is one form, the tetrahemihexahedron which has tetrahedral symmetry. There are two Schwarz triangles that generate unique nonconvex uniform polyhedra, one triangle, and one general triangle. The general triangle generates the octahemioctahedron which is given further on with its octahedral symmetry. There are 8 convex forms, and 10 nonconvex forms with octahedral symmetry, there are four Schwarz triangles that generate nonconvex forms, two right triangles, and, and two general triangles. There are 8 convex forms and 46 nonconvex forms with icosahedral symmetry, some of the nonconvex snub forms have reflective vertex symmetry. Coxeter identified a number of star polyhedra by the Wythoff construction method. It is counted as a uniform polyhedron rather than a uniform polyhedron because of its double edges. Star polygon List of uniform polyhedra List of uniform polyhedra by Schwarz triangle Coxeter, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, a proof of the completeness on the list of elementary homogeneous polyhedra, Ukrainskiui Geometricheskiui Sbornik, 139–156, MR0326550 Skilling, J. The complete set of polyhedra, Philosophical Transactions of the Royal Society of London. Mathematical and Physical Sciences,278, 111–135, doi,10. 1098/rsta.1975.0022, ISSN 0080-4614, JSTOR74475, MR0365333 HarEl, zvi Har’El, Kaleido software, Images, dual images Mäder, R. E. Messer, Peter W. Closed-Form Expressions for Uniform Polyhedra and Their Duals

9.
Truncation (geometry)
–
In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Keplers names for the Archimedean solids, in general any polyhedron can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, there are no degrees of freedom, and it represents a fixed geometric, just like the regular polyhedra. In general all single ringed uniform polytopes have a uniform truncation, for example, the icosidodecahedron, represented as Schläfli symbols r or, and Coxeter-Dynkin diagram or has a uniform truncation, the truncated icosidodecahedron, represented as tr or t. In the Coxeter-Dynkin diagram, the effect of a truncation is to ring all the adjacent to the ringed node. A truncated n-sided polygon will have 2n sides, a regular polygon uniformly truncated will become another regular polygon, t is. A complete truncation, r, is another regular polygon in its dual position, a regular polygon can also be represented by its Coxeter-Dynkin diagram, and its uniform truncation, and its complete truncation. Star polygons can also be truncated, a truncated pentagram will look like a pentagon, but is actually a double-covered decagon with two sets of overlapping vertices and edges. A truncated great heptagram gives a tetradecagram and this sequence shows an example of the truncation of a cube, using four steps of a continuous truncating process between a full cube and a rectified cube. The final polyhedron is a cuboctahedron, the middle image is the uniform truncated cube. It is represented by a Schläfli symbol t, a bitruncation is a deeper truncation, removing all the original edges, but leaving an interior part of the original faces. The truncated octahedron is a cube, 2t is an example. A complete bitruncation is called a birectification that reduces original faces to points, for polyhedra, this becomes the dual polyhedron. An octahedron is a birectification of the cube, = 2r is an example, another type of truncation is called cantellation, cuts edge and vertices, removing original edges and replacing them with rectangles. Higher dimensional polytopes have higher truncations, runcination cuts faces, edges, in 5-dimensions sterication cuts cells, faces, and edges. Edge-truncation is a beveling or chamfer for polyhedra, similar to cantellation but retains original vertices, in 4-polytopes edge-truncation replaces edges with elongated bipyramid cells. Alternation or partial truncation only removes some of the original vertices, a partial truncation or alternation - Half of the vertices and connecting edges are completely removed. The operation only applies to polytopes with even-sided faces, faces are reduced to half as many sides, and square faces degenerate into edges

10.
Great dodecahedron
–
In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol and Coxeter–Dynkin diagram of. It is one of four regular polyhedra. It is composed of 12 pentagonal faces, with five meeting at each vertex. It shares the same arrangement as the convex regular icosahedron. If the great dodecahedron is considered as a properly intersected surface geometry, the excavated dodecahedron can be seen as the same process applied to a regular dodecahedron. A truncation process applied to the great dodecahedron produces a series of uniform polyhedra. Truncating edges down to points produces the dodecadodecahedron as a great dodecahedron. The process completes as a birectification, reducing the original faces down to points and this shape was the basis for the Rubiks Cube-like Alexanders Star puzzle. The great dodecahedron provides an easy mnemonic for the binary Golay code Compound of small stellated dodecahedron and great dodecahedron Eric W. Weisstein, uniform polyhedra and duals Metal sculpture of Great Dodecahedron

11.
Star polyhedron
–
In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality. There are two kinds of star polyhedron, Polyhedra which self-intersect in a repetitive way. Concave polyhedra of a kind which alternate convex and concave or saddle vertices in a repetitive way. Mathematically these figures are examples of star domains, mathematical studies of star polyhedra are usually concerned with regular, uniform polyhedra, or the duals of the uniform polyhedra. All these stars are of the self-intersecting kind, the regular star polyhedra are self-intersecting polyhedra. They may either have self-intersecting faces, or self-intersecting vertex figures, There are four regular star polyhedra, known as the Kepler-Poinsot polyhedra. The Schläfli symbol implies faces with p sides, and vertex figures with q sides, two of them have pentagrammic faces and two have pentagrammic vertex figures. These images show each form with a single face colored yellow to show the visible portion of that face, There are many uniform star polyhedra including two infinite series, of prisms and of antiprisms, and their duals. The uniform and dual uniform polyhedra are also self-intersecting polyhedra. They may either have self-intersecting faces, or self-intersecting vertex figures or both, the uniform star polyhedra have regular faces or regular star polygon faces. The dual uniform polyhedra have regular faces or regular star polygon vertex figures. Beyond the forms above, there are unlimited classes of self-intersecting polyhedra, two important classes are the stellations of convex polyhedra and their duals, the facettings of the dual polyhedra. For example, the complete stellation of the icosahedron can be interpreted as a polyhedron composed of 12 identical faces. Below is an illustration of this polyhedron with one drawn in yellow. A similarly self-intersecting polytopes in any number of dimensions is called a star polytope, a regular polytope is a star polytope if either its facet or its vertex figure is a star polytope. In four dimensions, the 10 regular star polychora are called the Schläfli-Hess polychora, analogous to the regular star polyhedra, these 10 are all composed of facets which are either one of the five regular Platonic solids or one of the four regular star Kepler-Poinsot polyhedra. For example, the grand stellated 120-cell, projected orthogonally into 3-space, looks like this. A polyhedron which does not cross itself, such that all of the interior can be seen from one point, is an example of a star domain

12.
Polyhedron
–
In geometry, a polyhedron is a solid in three dimensions with flat polygonal faces, straight edges and sharp corners or vertices. The word polyhedron comes from the Classical Greek πολύεδρον, as poly- + -hedron, a convex polyhedron is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra, a polyhedron is a 3-dimensional example of the more general polytope in any number of dimensions. Convex polyhedra are well-defined, with several equivalent standard definitions, however, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of polyhedron have been given within particular contexts, some more rigorous than others, some of these definitions exclude shapes that have often been counted as polyhedra or include shapes that are often not considered as valid polyhedra. As Branko Grünbaum observed, The Original Sin in the theory of polyhedra goes back to Euclid, the writers failed to define what are the polyhedra. Nevertheless, there is agreement that a polyhedron is a solid or surface that can be described by its vertices, edges, faces. Natural refinements of this definition require the solid to be bounded, to have a connected interior, and possibly also to have a connected boundary. However, the polyhedra defined in this way do not include the self-crossing star polyhedra, their faces may not form simple polygons, definitions based on the idea of a bounding surface rather than a solid are also common. If a planar part of such a surface is not itself a convex polygon, ORourke requires it to be subdivided into smaller convex polygons, cromwell gives a similar definition but without the restriction of three edges per vertex. Again, this type of definition does not encompass the self-crossing polyhedra, however, there exist topological polyhedra that cannot be realized as acoptic polyhedra. One modern approach is based on the theory of abstract polyhedra and these can be defined as partially ordered sets whose elements are the vertices, edges, and faces of a polyhedron. A vertex or edge element is less than an edge or face element when the vertex or edge is part of the edge or face, additionally, one may include a special bottom element of this partial order and a top element representing the whole polyhedron. However, these requirements are relaxed, to instead require only that the sections between elements two levels apart from line segments. Geometric polyhedra, defined in other ways, can be described abstractly in this way, a realization of an abstract polyhedron is generally taken to be a mapping from the vertices of the abstract polyhedron to geometric points, such that the points of each face are coplanar. A geometric polyhedron can then be defined as a realization of an abstract polyhedron, realizations that forgo the requirement of planarity, that impose additional requirements of symmetry, or that map the vertices to higher dimensional spaces have also been considered. Unlike the solid-based and surface-based definitions, this perfectly well for star polyhedra. However, without restrictions, this definition allows degenerate or unfaithful polyhedra