Truncated order-5 pentagonal tiling

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Truncated order-5 pentagonal tiling
Truncated order-5 pentagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 5.10.10
Schläfli symbol t{5,5}
Wythoff symbol 2 5 | 5
Coxeter diagram CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node.png
Symmetry group [5,5], (*552)
Dual Order-5 pentakis pentagonal tiling
Properties Vertex-transitive

In geometry, the truncated order-5 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{5,5}, constructed from one pentagons and two decagons around every vertex.

Related tilings[edit]

See also[edit]

References[edit]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links[edit]