Truncated order-7 heptagonal tiling

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Truncated order-7 heptagonal tiling
Truncated order-7 heptagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 7.14.14
Schläfli symbol t{7,7}
Wythoff symbol 2 7 | 7
Coxeter diagram CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 7.pngCDel node.png
Symmetry group [7,7], (*772)
Dual Order-7 heptakis heptagonal tiling
Properties Vertex-transitive

In geometry, the truncated order-7 heptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{7,7}, constructed from one heptagons and two tetrakaidecagons around every vertex.

Related tilings[edit]

See also[edit]

References[edit]

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links[edit]