1.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
2.
Hyperbolic geometry
–
In mathematics, hyperbolic geometry is a non-Euclidean geometry. Hyperbolic plane geometry is also the geometry of saddle surface or pseudospherical surfaces, surfaces with a constant negative Gaussian curvature, a modern use of hyperbolic geometry is in the theory of special relativity, particularly Minkowski spacetime and gyrovector space. In Russia it is commonly called Lobachevskian geometry, named one of its discoverers. This page is mainly about the 2-dimensional hyperbolic geometry and the differences and similarities between Euclidean and hyperbolic geometry, Hyperbolic geometry can be extended to three and more dimensions, see hyperbolic space for more on the three and higher dimensional cases. Hyperbolic geometry is closely related to Euclidean geometry than it seems. When the parallel postulate is removed from Euclidean geometry the resulting geometry is absolute geometry, there are two kinds of absolute geometry, Euclidean and hyperbolic. All theorems of geometry, including the first 28 propositions of book one of Euclids Elements, are valid in Euclidean. Propositions 27 and 28 of Book One of Euclids Elements prove the existence of parallel/non-intersecting lines and this difference also has many consequences, concepts that are equivalent in Euclidean geometry are not equivalent in hyperbolic geometry, new concepts need to be introduced. Further, because of the angle of parallelism hyperbolic geometry has an absolute scale, single lines in hyperbolic geometry have exactly the same properties as single straight lines in Euclidean geometry. For example, two points define a line, and lines can be infinitely extended. Two intersecting lines have the properties as two intersecting lines in Euclidean geometry. For example, two lines can intersect in no more than one point, intersecting lines have equal opposite angles, when we add a third line then there are properties of intersecting lines that differ from intersecting lines in Euclidean geometry. For example, given 2 intersecting lines there are many lines that do not intersect either of the given lines. While in some models lines look different they do have these properties, non-intersecting lines in hyperbolic geometry also have properties that differ from non-intersecting lines in Euclidean geometry, For any line R and any point P which does not lie on R. In the plane containing line R and point P there are at least two lines through P that do not intersect R. This implies that there are through P an infinite number of lines that do not intersect R. All other non-intersecting lines have a point of distance and diverge from both sides of that point, and are called ultraparallel, diverging parallel or sometimes non-intersecting. Some geometers simply use parallel lines instead of limiting parallel lines and these limiting parallels make an angle θ with PB, this angle depends only on the Gaussian curvature of the plane and the distance PB and is called the angle of parallelism
3.
Octagonal prism
–
In geometry, the octagonal prism is the sixth in an infinite set of prisms, formed by square sides and two regular octagon caps. If faces are all regular, it is a semiregular polyhedron, the octagonal prism can also be seen as a tiling on a sphere, In optics, octagonal prisms are used to generate flicker-free images in movie projectors. It is an element of three uniform honeycombs, It is also an element of two four-dimensional uniform 4-polytopes, Weisstein, Eric W. Octagonal prism, interactive model of an Octagonal Prism
4.
Vertex configuration
–
In geometry, a vertex configuration is a shorthand notation for representing the vertex figure of a polyhedron or tiling as the sequence of faces around a vertex. For uniform polyhedra there is one vertex type and therefore the vertex configuration fully defines the polyhedron. A vertex configuration is given as a sequence of numbers representing the number of sides of the faces going around the vertex, the notation a. b. c describes a vertex that has 3 faces around it, faces with a, b, and c sides. For example,3.5.3.5 indicates a vertex belonging to 4 faces, alternating triangles and this vertex configuration defines the vertex-transitive icosidodecahedron. The notation is cyclic and therefore is equivalent with different starting points, the order is important, so 3.3.5.5 is different from 3.5.3.5. Repeated elements can be collected as exponents so this example is represented as 2. It has variously called a vertex description, vertex type, vertex symbol, vertex arrangement, vertex pattern. It is also called a Cundy and Rollett symbol for its usage for the Archimedean solids in their 1952 book Mathematical Models, a vertex configuration can also be represented as a polygonal vertex figure showing the faces around the vertex. Different notations are used, sometimes with a comma and sometimes a period separator, the period operator is useful because it looks like a product and an exponent notation can be used. For example,3.5.3.5 is sometimes written as 2, the notation can also be considered an expansive form of the simple Schläfli symbol for regular polyhedra. The Schläfli notation means q p-gons around each vertex, so can be written as p. p. p. or pq. For example, an icosahedron is =3.3.3.3.3 or 35 and this notation applies to polygonal tilings as well as polyhedra. A planar vertex configuration denotes a uniform tiling just like a nonplanar vertex configuration denotes a uniform polyhedron, the notation is ambiguous for chiral forms. For example, the cube has clockwise and counterclockwise forms which are identical across mirror images. Both have a 3.3.3.3.4 vertex configuration, the notation also applies for nonconvex regular faces, the star polygons. For example, a pentagram has the symbol, meaning it has 5 sides going around the centre twice, for example, there are 4 regular star polyhedra with regular polygon or star polygon vertex figures. The small stellated dodecahedron has the Schläfli symbol of which expands to a vertex configuration 5/2. 5/2. 5/2. 5/2. 5/2 or combined as 5. The great stellated dodecahedron, has a vertex figure and configuration or 3
5.
Dual polyhedron
–
Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron, duality preserves the symmetries of a polyhedron. Therefore, for classes of polyhedra defined by their symmetries. Thus, the regular polyhedra – the Platonic solids and Kepler-Poinsot polyhedra – form dual pairs, the dual of an isogonal polyhedron, having equivalent vertices, is one which is isohedral, having equivalent faces. The dual of a polyhedron is also isotoxal. Duality is closely related to reciprocity or polarity, a transformation that. There are many kinds of duality, the kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality. The duality of polyhedra is often defined in terms of polar reciprocation about a concentric sphere. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2. The vertices of the dual are the reciprocal to the face planes of the original. Also, any two adjacent vertices define an edge, and these will reciprocate to two adjacent faces which intersect to define an edge of the dual and this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, and r 1 and r 2 respectively the distances from its centre to the pole and its polar, then, r 1. R2 = r 02 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point. Failing that, a sphere, inscribed sphere, or midsphere is commonly used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required plane at infinity. Some theorists prefer to stick to Euclidean space and say there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, the concept of duality here is closely related to the duality in projective geometry, where lines and edges are interchanged
6.
Orbifold notation
–
Groups representable in this notation include the point groups on the sphere, the frieze groups and wallpaper groups of the Euclidean plane, and their analogues on the hyperbolic plane. e. All translations which occur are assumed to form a subgroup of the group symmetries being described. The symbol ×, which is called a miracle and represents a topological crosscap where a pattern repeats as an image without crossing a mirror line. A string written in boldface represents a group of symmetries of Euclidean 3-space, a string not written in boldface represents a group of symmetries of the Euclidean plane, which is assumed to contain two independent translations. By abuse of language, we say that such a group is a subgroup of symmetries of the Euclidean plane with only one independent translation. The frieze groups occur in this way, the exceptional symbol o indicates that there are precisely two linearly independent translations. An orbifold symbol is called if it is not one of the following, p, pq, *p, *pq, for p, q>=2. An object is chiral if its symmetry group contains no reflections, the corresponding orbifold is orientable in the chiral case and non-orientable otherwise. The Euler characteristic of an orbifold can be read from its Conway symbol, as follows. Each feature has a value, n without or before an asterisk counts as n −1 n n after an asterisk counts as n −12 n asterisk, subtracting the sum of these values from 2 gives the Euler characteristic. If the sum of the values is 2, the order is infinite. Indeed, Conways Magic Theorem indicates that the 17 wallpaper groups are exactly those with the sum of the feature values equal to 2, otherwise, the order is 2 divided by the Euler characteristic. The following groups are isomorphic, 1* and *1122 and 221 *22 and *221 2* and this is because 1-fold rotation is the empty rotation. The symmetry of a 2D object without translational symmetry can be described by the 3D symmetry type by adding a dimension to the object which does not add or spoil symmetry. The bullet is added on one- and two-dimensional groups to imply the existence of a fixed point, thus the discrete symmetry groups in one dimension are *•, *1•, ∞• and *∞•. Another way of constructing a 3D object from a 1D or 2D object for describing the symmetry is taking the Cartesian product of the object, on Three-dimensional Orbifolds and Space Groups. Contributions to Algebra and Geometry,42, 475-507,2001, J. H. Conway, D. H. Huson. The Orbifold Notation for Two-Dimensional Groups, structural Chemistry,13, 247-257, August 2002
7.
Disdyakis dodecahedron
–
In geometry, a disdyakis dodecahedron, or hexakis octahedron or kisrhombic dodecahedron), is a Catalan solid with 48 faces and the dual to the Archimedean truncated cuboctahedron. As such it is face-transitive but with irregular face polygons, more formally, the disdyakis dodecahedron is the Kleetope of the rhombic dodecahedron. Its collective edges represent the reflection planes of the symmetry and it can also be seen in the corner and mid-edge triangulation of the regular cube and octahedron, and rhombic dodecahedron. Seen in stereographic projection the edges of the dodecahedron form 9 circles in the plane. Between a polyhedron and its dual, vertices and faces are swapped in positions, the disdyakis dodecahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron. It is a polyhedra in a sequence defined by the face configuration V4.6. 2n, with an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors. Each face on these domains also corresponds to the domain of a symmetry group with order 2,3, n mirrors at each triangle face vertex. First stellation of rhombic dodecahedron Disdyakis triacontahedron Kisrhombille tiling Great rhombihexacron—A uniform dual polyhedron with the surface topology Williams. The Geometrical Foundation of Natural Structure, A Source Book of Design, the Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 Eric W. Weisstein, Disdyakis dodecahedron at MathWorld
8.
Uniform tilings in hyperbolic plane
–
In hyperbolic geometry, a uniform hyperbolic tiling is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, and the tiling has a degree of rotational and translational symmetry. Uniform tilings can be identified by their vertex configuration, a sequence of numbers representing the number of sides of the polygons around each vertex, for example 7.7.7 represents the heptagonal tiling which has 3 heptagons around each vertex. It is also regular since all the polygons are the same size, uniform tilings may be regular, quasi-regular or semi-regular. For right triangles, there are two regular tilings, represented by Schläfli symbol and, each symmetry family contains 7 uniform tilings, defined by a Wythoff symbol or Coxeter-Dynkin diagram,7 representing combinations of 3 active mirrors. An 8th represents an alternation operation, deleting alternate vertices from the highest form with all mirrors active, families with r =2 contain regular hyperbolic tilings, defined by a Coxeter group such as. Hyperbolic families with r =3 or higher are given by, hyperbolic triangles define compact uniform hyperbolic tilings. More symmetry families can be constructed from fundamental domains that are not triangles, selected families of uniform tilings are shown below. Each uniform tiling generates a dual tiling, with many of them also given below. There are infinitely many triangle group families and this article shows the regular tiling up to p, q =8, and uniform tilings in 12 families, and. The simplest set of hyperbolic tilings are regular tilings, which exist in a matrix with the regular polyhedra, the regular tiling has a dual tiling across the diagonal axis of the table. Self-dual tilings, etc. pass down the diagonal of the table, because all the elements are even, each uniform dual tiling one represents the fundamental domain of a reflective symmetry, *3333, *662, *3232, *443, *222222, *3222, and *642 respectively. As well, all 7 uniform tiling can be alternated, the triangle group, Coxeter group, orbifold contains these uniform tilings, The triangle group, Coxeter group, orbifold contains these uniform tilings. Because all the elements are even, each uniform dual tiling one represents the domain of a reflective symmetry, *4444, *882, *4242, *444, *22222222, *4222. As well, all 7 uniform tiling can be alternated, and this article shows uniform tilings in 9 families, and. The triangle group, Coxeter group, orbifold contains these uniform tilings, without right angles in the fundamental triangle, the Wythoff constructions are slightly different. For instance in the family, the snub form has six polygons around a vertex. In general the vertex figure of a tiling in a triangle is p.3. q.3. r.3