Truncated tetrahexagonal tiling
In geometry, the truncated tetrahexagonal tiling is a semiregular tiling of the hyperbolic plane. There are one square, one octagon, and one dodecagon on each vertex and it has Schläfli symbol of tr. From a Wythoff construction there are fourteen hyperbolic uniform tilings that can be based from the regular hexagonal tiling. Drawing the tiles colored as red on the faces, yellow at the original vertices, and blue along the original edges, there are 7 forms with full symmetry. The dual of the tiling represents the fundamental domains of orbifold symmetry, from symmetry, there are 15 small index subgroup by mirror removal and alternation operators. Mirrors can be removed if its branch orders are all even, removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images unique mirrors are colored red and blue, subgroup has narrow lines representing glide reflections. The subgroup index-8 group, is the subgroup of. Larger subgroup constructed as, removing the gyration points of, index 6 becomes, finally their direct subgroups +, +, subgroup indices 12 and 24 respectively, can be given in orbifold notation as and.
The Beauty of Geometry, Twelve Essays, Eric W. Poincaré hyperbolic disk. Hyperbolic and Spherical Tiling Gallery KaleidoTile 3, Educational software to create spherical and hyperbolic tilings Hyperbolic Planar Tessellations, Don Hatch
Geometry
Geometry is a branch of mathematics concerned with questions of shape, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry.
These include the concepts of points, planes, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, planes, triangles, similarity, solid figures, Euclidean geometry has applications in computer science and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques.
It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
Truncated order-4 pentagonal tiling
In geometry, the truncated order-4 pentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1, a half symmetry = coloring can be constructed with two colors of decagons. This coloring is called a pentapentagonal tiling. There is only one subgroup of, +, removing all the mirrors and this symmetry can be doubled to 542 symmetry by adding a bisecting mirror. John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Chapter 10, the Beauty of Geometry, Twelve Essays. Uniform tilings in hyperbolic plane List of regular polytopes Weisstein, Eric W. Hyperbolic tiling, Eric W. Poincaré hyperbolic disk. Hyperbolic and Spherical Tiling Gallery KaleidoTile 3, Educational software to create spherical and hyperbolic tilings Hyperbolic Planar Tessellations, Don Hatch
Coxeter notation
The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson. For Coxeter groups defined by pure reflections, there is a correspondence between the bracket notation and Coxeter-Dynkin diagram. The numbers in the notation represent the mirror reflection orders in the branches of the Coxeter diagram. It uses the same simplification, suppressing 2s between orthogonal mirrors, the Coxeter notation is simplified with exponents to represent the number of branches in a row for linear diagram. So the An group is represented by, to imply n nodes connected by n-1 order-3 branches, example A2 = = or represents diagrams or. Coxeter initially represented bifurcating diagrams with vertical positioning of numbers, but abbreviated with an exponent notation, Coxeter allowed for zeros as special cases to fit the An family, like A3 = = = =, like = =. Coxeter groups formed by cyclic diagrams are represented by parenthesese inside of brackets, if the branch orders are equal, they can be grouped as an exponent as the length the cycle in brackets, like =, representing Coxeter diagram or.
More complicated looping diagrams can be expressed with care, the paracompact complete graph diagram or, is represented as with the superscript as the symmetry of its regular tetrahedron coxeter diagram. The Coxeter diagram usually leaves order-2 branches undrawn, but the bracket notation includes an explicit 2 to connect the subgraphs, so the Coxeter diagram = A2×A2 = 2A2 can be represented by × =2 =. For the affine and hyperbolic groups, the subscript is one less than the number of nodes in each case, Coxeters notation represents rotational/translational symmetry by adding a + superscript operator outside the brackets which cuts the order of the group in half. This is called a direct subgroup because what remains are only direct isometries without reflective symmetry, + operators can be applied inside of the brackets, and creates semidirect subgroups that include both reflective and nonreflective generators. Semidirect subgroups can only apply to Coxeter group subgroups that have even order branches next to it, the subgroup index is 2n for n + operators.
So the snub cube, has symmetry +, and the tetrahedron, has symmetry. Johnson extends the + operator to work with a placeholder 1 nodes, in general this operation only applies to mirrors bounded by all even-order branches. The 1 represents a mirror so can be seen as, or, like diagram or, the effect of a mirror removal is to duplicate connecting nodes, which can be seen in the Coxeter diagrams, =, or in bracket notation, = =. Each of these mirrors can be removed so h = = = and this can be shown in a Coxeter diagram by adding a + symbol above the node, = =. If both mirrors are removed, a subgroup is generated, with the branch order becoming a gyration point of half the order, q = = +. For example, = = = ×, order 4. = +, the opposite to halving is doubling which adds a mirror, bisecting a fundamental domain, and doubling the group order
Disdyakis dodecahedron
In geometry, a disdyakis dodecahedron, or hexakis octahedron or kisrhombic dodecahedron), is a Catalan solid with 48 faces and the dual to the Archimedean truncated cuboctahedron. As such it is face-transitive but with irregular face polygons, more formally, the disdyakis dodecahedron is the Kleetope of the rhombic dodecahedron. Its collective edges represent the reflection planes of the symmetry and it can be seen in the corner and mid-edge triangulation of the regular cube and octahedron, and rhombic dodecahedron. Seen in stereographic projection the edges of the dodecahedron form 9 circles in the plane. Between a polyhedron and its dual and faces are swapped in positions, the disdyakis dodecahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron. It is a polyhedra in a sequence defined by the face configuration V4.6. 2n, with an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors.
Each face on these domains corresponds to the domain of a symmetry group with order 2,3, n mirrors at each triangle face vertex. First stellation of rhombic dodecahedron Disdyakis triacontahedron Kisrhombille tiling Great rhombihexacron—A uniform dual polyhedron with the surface topology Williams. The Geometrical Foundation of Natural Structure, A Source Book of Design, the Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 Eric W. Weisstein, Disdyakis dodecahedron at MathWorld
Dual polyhedron
Such dual figures remain combinatorial or abstract polyhedra, but not all are geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron, duality preserves the symmetries of a polyhedron. Therefore, for classes of polyhedra defined by their symmetries. Thus, the regular polyhedra – the Platonic solids and Kepler-Poinsot polyhedra – form dual pairs, the dual of an isogonal polyhedron, having equivalent vertices, is one which is isohedral, having equivalent faces. The dual of a polyhedron is isotoxal. Duality is closely related to reciprocity or polarity, a transformation that. There are many kinds of duality, the kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality. The duality of polyhedra is often defined in terms of polar reciprocation about a concentric sphere. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2.
The vertices of the dual are the reciprocal to the face planes of the original. Also, any two adjacent vertices define an edge, and these will reciprocate to two adjacent faces which intersect to define an edge of the dual and this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, and r 1 and r 2 respectively the distances from its centre to the pole and its polar, then, r 1. R2 = r 02 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point. Failing that, a sphere, inscribed sphere, or midsphere is commonly used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required plane at infinity.
Some theorists prefer to stick to Euclidean space and say there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, the concept of duality here is closely related to the duality in projective geometry, where lines and edges are interchanged
Isogonal figure
In geometry, a polytope is isogonal or vertex-transitive if, loosely speaking, all its vertices are equivalent. That implies that each vertex is surrounded by the kinds of face in the same or reverse order. Technically, we say that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope is transitive on its vertices, all vertices of a finite n-dimensional isogonal figure exist on an -sphere. The term isogonal has long used for polyhedra. Vertex-transitive is a synonym borrowed from modern ideas such as symmetry groups, all regular polygons and regular star polygons are isogonal. The dual of a polygon is an isotoxal polygon. Some even-sided polygons and apeirogons which alternate two edge lengths, for example a rectangle, are isogonal, all planar isogonal 2n-gons have dihedral symmetry with reflection lines across the mid-edge points. An isogonal polyhedron and 2D tiling has a kind of vertex.
An isogonal polyhedron with all faces is a uniform polyhedron. Geometrically distorted variations of uniform polyhedra and tilings can be given the vertex configuration, isogonal polyhedra and 2D tilings may be further classified, Regular if it is isohedral and isotoxal, this implies that every face is the same kind of regular polygon. Quasi-regular if it is isotoxal but not isohedral, semi-regular if every face is a regular polygon but it is not isohedral or isotoxal. Uniform if every face is a polygon, i. e. it is regular, quasiregular or semi-regular. Noble if it is isohedral and these definitions can be extended to higher-dimensional polytopes and tessellations. Most generally, all uniform polytopes are isogonal, for example, the dual of an isogonal polytope is called an isotope which is transitive on its facets. A polytope or tiling may be called if its vertices form k transitivity classes. A more restrictive term, k-uniform is defined as a figure constructed only from regular polygons.
They can be represented visually with colors by different uniform colorings, edge-transitive Face-transitive Peter R. Cromwell, Cambridge University Press 1997, ISBN 0-521-55432-2, p.369 Transitivity Grünbaum, Shephard, G. C
Cuboid
In geometry, a cuboid is a convex polyhedron bounded by six quadrilateral faces, whose polyhedral graph is the same as that of a cube. By Eulers formula the numbers of faces F, of vertices V, in the case of a cuboid this gives 6 +8 =12 +2, that is, like a cube, a cuboid has 6 faces,8 vertices, and 12 edges. Along with the rectangular cuboids, any parallelepiped is a cuboid of this type, in a rectangular cuboid, all angles are right angles, and opposite faces of a cuboid are equal. By definition this makes it a rectangular prism, and the terms rectangular parallelepiped or orthogonal parallelepiped are used to designate this polyhedron. The terms rectangular prism and oblong prism, are ambiguous, the square cuboid, square box, or right square prism is a special case of the cuboid in which at least two faces are squares. It has Schläfli symbol ×, and its symmetry is doubled from to, the cube is a special case of the square cuboid in which all six faces are squares. It has Schläfli symbol, and its symmetry is raised from, to, if the dimensions of a rectangular cuboid are a, b and c, its volume is abc and its surface area is 2.
The length of the diagonal is d = a 2 + b 2 + c 2. Cuboid shapes are used for boxes, rooms, buildings. Cuboids are among those solids that can tessellate 3-dimensional space, the shape is fairly versatile in being able to contain multiple smaller cuboids, e. g. sugar cubes in a box, boxes in a cupboard, cupboards in a room, and rooms in a building. A cuboid with integer edges as well as integer face diagonals is called an Euler brick, a perfect cuboid is an Euler brick whose space diagonal is an integer. It is currently unknown whether a perfect cuboid actually exists, the number of different nets for a simple cube is 11, however this number increases significantly to 54 for a rectangular cuboid of 3 different lengths. Hyperrectangle Trapezohedron Weisstein, Eric W. Cuboid, rectangular prism and cuboid Paper models and pictures
Truncated tetraheptagonal tiling
In geometry, the truncated tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of tr, Poincaré disk projection, centered on 14-gon, The dual to this tiling represents the fundamental domains of symmetry. There are 3 small index subgroups constructed from by mirror removal, in these images fundamental domains are alternately colored black and white, and mirrors exist on the boundaries between colors. John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Chapter 10, the Beauty of Geometry, Twelve Essays. Uniform tilings in hyperbolic plane List of regular polytopes Weisstein, Eric W. Hyperbolic tiling, Eric W. Poincaré hyperbolic disk. Hyperbolic and Spherical Tiling Gallery KaleidoTile 3, Educational software to create spherical and hyperbolic tilings Hyperbolic Planar Tessellations, Don Hatch
Orbifold notation
Groups representable in this notation include the point groups on the sphere, the frieze groups and wallpaper groups of the Euclidean plane, and their analogues on the hyperbolic plane. e. All translations which occur are assumed to form a subgroup of the group symmetries being described. The symbol ×, which is called a miracle and represents a topological crosscap where a pattern repeats as an image without crossing a mirror line. A string written in boldface represents a group of symmetries of Euclidean 3-space, a string not written in boldface represents a group of symmetries of the Euclidean plane, which is assumed to contain two independent translations. By abuse of language, we say that such a group is a subgroup of symmetries of the Euclidean plane with only one independent translation. The frieze groups occur in this way, the exceptional symbol o indicates that there are precisely two linearly independent translations. An orbifold symbol is called if it is not one of the following, p, pq, *p, *pq, for p, q>=2.
An object is chiral if its symmetry group contains no reflections, the corresponding orbifold is orientable in the chiral case and non-orientable otherwise. The Euler characteristic of an orbifold can be read from its Conway symbol, as follows. Each feature has a value, n without or before an asterisk counts as n −1 n n after an asterisk counts as n −12 n asterisk, subtracting the sum of these values from 2 gives the Euler characteristic. If the sum of the values is 2, the order is infinite. Indeed, Conways Magic Theorem indicates that the 17 wallpaper groups are exactly those with the sum of the feature values equal to 2, the order is 2 divided by the Euler characteristic. The following groups are isomorphic, 1* and *1122 and 221 *22 and *221 2* and this is because 1-fold rotation is the empty rotation. The symmetry of a 2D object without translational symmetry can be described by the 3D symmetry type by adding a dimension to the object which does not add or spoil symmetry. The bullet is added on one- and two-dimensional groups to imply the existence of a fixed point, thus the discrete symmetry groups in one dimension are *•, *1•, ∞• and *∞•.
Another way of constructing a 3D object from a 1D or 2D object for describing the symmetry is taking the Cartesian product of the object, on Three-dimensional Orbifolds and Space Groups. Contributions to Algebra and Geometry,42, 475-507,2001, J. H. Conway, D. H. Huson. The Orbifold Notation for Two-Dimensional Groups, structural Chemistry,13, 247-257, August 2002