1.
Hyperbolic geometry
–
In mathematics, hyperbolic geometry is a non-Euclidean geometry. Hyperbolic plane geometry is also the geometry of saddle surface or pseudospherical surfaces, surfaces with a constant negative Gaussian curvature, a modern use of hyperbolic geometry is in the theory of special relativity, particularly Minkowski spacetime and gyrovector space. In Russia it is commonly called Lobachevskian geometry, named one of its discoverers. This page is mainly about the 2-dimensional hyperbolic geometry and the differences and similarities between Euclidean and hyperbolic geometry, Hyperbolic geometry can be extended to three and more dimensions, see hyperbolic space for more on the three and higher dimensional cases. Hyperbolic geometry is closely related to Euclidean geometry than it seems. When the parallel postulate is removed from Euclidean geometry the resulting geometry is absolute geometry, there are two kinds of absolute geometry, Euclidean and hyperbolic. All theorems of geometry, including the first 28 propositions of book one of Euclids Elements, are valid in Euclidean. Propositions 27 and 28 of Book One of Euclids Elements prove the existence of parallel/non-intersecting lines and this difference also has many consequences, concepts that are equivalent in Euclidean geometry are not equivalent in hyperbolic geometry, new concepts need to be introduced. Further, because of the angle of parallelism hyperbolic geometry has an absolute scale, single lines in hyperbolic geometry have exactly the same properties as single straight lines in Euclidean geometry. For example, two points define a line, and lines can be infinitely extended. Two intersecting lines have the properties as two intersecting lines in Euclidean geometry. For example, two lines can intersect in no more than one point, intersecting lines have equal opposite angles, when we add a third line then there are properties of intersecting lines that differ from intersecting lines in Euclidean geometry. For example, given 2 intersecting lines there are many lines that do not intersect either of the given lines. While in some models lines look different they do have these properties, non-intersecting lines in hyperbolic geometry also have properties that differ from non-intersecting lines in Euclidean geometry, For any line R and any point P which does not lie on R. In the plane containing line R and point P there are at least two lines through P that do not intersect R. This implies that there are through P an infinite number of lines that do not intersect R. All other non-intersecting lines have a point of distance and diverge from both sides of that point, and are called ultraparallel, diverging parallel or sometimes non-intersecting. Some geometers simply use parallel lines instead of limiting parallel lines and these limiting parallels make an angle θ with PB, this angle depends only on the Gaussian curvature of the plane and the distance PB and is called the angle of parallelism
2.
Uniform tilings in hyperbolic plane
–
In hyperbolic geometry, a uniform hyperbolic tiling is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, and the tiling has a degree of rotational and translational symmetry. Uniform tilings can be identified by their vertex configuration, a sequence of numbers representing the number of sides of the polygons around each vertex, for example 7.7.7 represents the heptagonal tiling which has 3 heptagons around each vertex. It is also regular since all the polygons are the same size, uniform tilings may be regular, quasi-regular or semi-regular. For right triangles, there are two regular tilings, represented by Schläfli symbol and, each symmetry family contains 7 uniform tilings, defined by a Wythoff symbol or Coxeter-Dynkin diagram,7 representing combinations of 3 active mirrors. An 8th represents an alternation operation, deleting alternate vertices from the highest form with all mirrors active, families with r =2 contain regular hyperbolic tilings, defined by a Coxeter group such as. Hyperbolic families with r =3 or higher are given by, hyperbolic triangles define compact uniform hyperbolic tilings. More symmetry families can be constructed from fundamental domains that are not triangles, selected families of uniform tilings are shown below. Each uniform tiling generates a dual tiling, with many of them also given below. There are infinitely many triangle group families and this article shows the regular tiling up to p, q =8, and uniform tilings in 12 families, and. The simplest set of hyperbolic tilings are regular tilings, which exist in a matrix with the regular polyhedra, the regular tiling has a dual tiling across the diagonal axis of the table. Self-dual tilings, etc. pass down the diagonal of the table, because all the elements are even, each uniform dual tiling one represents the fundamental domain of a reflective symmetry, *3333, *662, *3232, *443, *222222, *3222, and *642 respectively. As well, all 7 uniform tiling can be alternated, the triangle group, Coxeter group, orbifold contains these uniform tilings, The triangle group, Coxeter group, orbifold contains these uniform tilings. Because all the elements are even, each uniform dual tiling one represents the domain of a reflective symmetry, *4444, *882, *4242, *444, *22222222, *4222. As well, all 7 uniform tiling can be alternated, and this article shows uniform tilings in 9 families, and. The triangle group, Coxeter group, orbifold contains these uniform tilings, without right angles in the fundamental triangle, the Wythoff constructions are slightly different. For instance in the family, the snub form has six polygons around a vertex. In general the vertex figure of a tiling in a triangle is p.3. q.3. r.3
3.
Vertex configuration
–
In geometry, a vertex configuration is a shorthand notation for representing the vertex figure of a polyhedron or tiling as the sequence of faces around a vertex. For uniform polyhedra there is one vertex type and therefore the vertex configuration fully defines the polyhedron. A vertex configuration is given as a sequence of numbers representing the number of sides of the faces going around the vertex, the notation a. b. c describes a vertex that has 3 faces around it, faces with a, b, and c sides. For example,3.5.3.5 indicates a vertex belonging to 4 faces, alternating triangles and this vertex configuration defines the vertex-transitive icosidodecahedron. The notation is cyclic and therefore is equivalent with different starting points, the order is important, so 3.3.5.5 is different from 3.5.3.5. Repeated elements can be collected as exponents so this example is represented as 2. It has variously called a vertex description, vertex type, vertex symbol, vertex arrangement, vertex pattern. It is also called a Cundy and Rollett symbol for its usage for the Archimedean solids in their 1952 book Mathematical Models, a vertex configuration can also be represented as a polygonal vertex figure showing the faces around the vertex. Different notations are used, sometimes with a comma and sometimes a period separator, the period operator is useful because it looks like a product and an exponent notation can be used. For example,3.5.3.5 is sometimes written as 2, the notation can also be considered an expansive form of the simple Schläfli symbol for regular polyhedra. The Schläfli notation means q p-gons around each vertex, so can be written as p. p. p. or pq. For example, an icosahedron is =3.3.3.3.3 or 35 and this notation applies to polygonal tilings as well as polyhedra. A planar vertex configuration denotes a uniform tiling just like a nonplanar vertex configuration denotes a uniform polyhedron, the notation is ambiguous for chiral forms. For example, the cube has clockwise and counterclockwise forms which are identical across mirror images. Both have a 3.3.3.3.4 vertex configuration, the notation also applies for nonconvex regular faces, the star polygons. For example, a pentagram has the symbol, meaning it has 5 sides going around the centre twice, for example, there are 4 regular star polyhedra with regular polygon or star polygon vertex figures. The small stellated dodecahedron has the Schläfli symbol of which expands to a vertex configuration 5/2. 5/2. 5/2. 5/2. 5/2 or combined as 5. The great stellated dodecahedron, has a vertex figure and configuration or 3
4.
Wythoff symbol
–
In geometry, the Wythoff symbol represents a Wythoff construction of a uniform polyhedron or plane tiling, from a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra, a Wythoff symbol consists of three numbers and a vertical bar. It represents one uniform polyhedron or tiling, although the same tiling/polyhedron can have different Wythoff symbols from different symmetry generators, with a slight extension, Wythoffs symbol can be applied to all uniform polyhedra. However, the methods do not lead to all uniform tilings in euclidean or hyperbolic space. In three dimensions, Wythoffs construction begins by choosing a point on the triangle. If the distance of this point from each of the sides is non-zero, a perpendicular line is then dropped between the generator point and every face that it does not lie on. The three numbers in Wythoffs symbol, p, q and r, represent the corners of the Schwarz triangle used in the construction, the triangle is also represented with the same numbers, written. In this notation the mirrors are labeled by the reflection-order of the opposite vertex, the p, q, r values are listed before the bar if the corresponding mirror is active. The one impossible symbol | p q r implies the point is on all mirrors. This unused symbol is therefore arbitrarily reassigned to represent the case where all mirrors are active, the resulting figure has rotational symmetry only. The generator point can either be on or off each mirror and this distinction creates 8 possible forms, neglecting one where the generator point is on all the mirrors. A node is circled if the point is not on the mirror. There are seven generator points with each set of p, q, r, | p q r – Snub forms are given by this otherwise unused symbol. | p q r s – A unique snub form for U75 that isnt Wythoff-constructible, There are 4 symmetry classes of reflection on the sphere, and two in the Euclidean plane. A few of the many such patterns in the hyperbolic plane are also listed. The list of Schwarz triangles includes rational numbers, and determine the set of solutions of nonconvex uniform polyhedra. In the tilings above, each triangle is a domain, colored by even. Selected tilings created by the Wythoff construction are given below, for a more complete list, including cases where r ≠2, see List of uniform polyhedra by Schwarz triangle
5.
Dual polyhedron
–
Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron, duality preserves the symmetries of a polyhedron. Therefore, for classes of polyhedra defined by their symmetries. Thus, the regular polyhedra – the Platonic solids and Kepler-Poinsot polyhedra – form dual pairs, the dual of an isogonal polyhedron, having equivalent vertices, is one which is isohedral, having equivalent faces. The dual of a polyhedron is also isotoxal. Duality is closely related to reciprocity or polarity, a transformation that. There are many kinds of duality, the kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality. The duality of polyhedra is often defined in terms of polar reciprocation about a concentric sphere. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2. The vertices of the dual are the reciprocal to the face planes of the original. Also, any two adjacent vertices define an edge, and these will reciprocate to two adjacent faces which intersect to define an edge of the dual and this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, and r 1 and r 2 respectively the distances from its centre to the pole and its polar, then, r 1. R2 = r 02 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point. Failing that, a sphere, inscribed sphere, or midsphere is commonly used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required plane at infinity. Some theorists prefer to stick to Euclidean space and say there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, the concept of duality here is closely related to the duality in projective geometry, where lines and edges are interchanged
6.
Order-4-5 kisrhombille tiling
–
In geometry, the 4-5 kisrhombille or order-4 bisected pentagonal tiling is a semiregular dual tiling of the hyperbolic plane. It is constructed by congruent right triangles with 4,8, the name 4-5 kisrhombille is by Conway, seeing it as a 4-5 rhombic tiling, divided by a kis operator, adding a center point to each rhombus, and dividing into four triangles. The image shows a Poincaré disk model projection of the hyperbolic plane and it is labeled V4.8.10 because each right triangle face has three types of vertices, one with 4 triangles, one with 8 triangles, and one with 10 triangles. It is the tessellation of the truncated tetrapentagonal tiling which has one square and one octagon. John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Hexakis triangular tiling List of uniform tilings Uniform tilings in hyperbolic plane
7.
Isogonal figure
–
In geometry, a polytope is isogonal or vertex-transitive if, loosely speaking, all its vertices are equivalent. That implies that each vertex is surrounded by the kinds of face in the same or reverse order. Technically, we say that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope is transitive on its vertices, all vertices of a finite n-dimensional isogonal figure exist on an -sphere. The term isogonal has long used for polyhedra. Vertex-transitive is a synonym borrowed from modern ideas such as symmetry groups, all regular polygons, apeirogons and regular star polygons are isogonal. The dual of a polygon is an isotoxal polygon. Some even-sided polygons and apeirogons which alternate two edge lengths, for example a rectangle, are isogonal, all planar isogonal 2n-gons have dihedral symmetry with reflection lines across the mid-edge points. An isogonal polyhedron and 2D tiling has a kind of vertex. An isogonal polyhedron with all faces is also a uniform polyhedron. Geometrically distorted variations of uniform polyhedra and tilings can also be given the vertex configuration, isogonal polyhedra and 2D tilings may be further classified, Regular if it is also isohedral and isotoxal, this implies that every face is the same kind of regular polygon. Quasi-regular if it is also isotoxal but not isohedral, semi-regular if every face is a regular polygon but it is not isohedral or isotoxal. Uniform if every face is a polygon, i. e. it is regular, quasiregular or semi-regular. Noble if it is also isohedral and these definitions can be extended to higher-dimensional polytopes and tessellations. Most generally, all uniform polytopes are isogonal, for example, the dual of an isogonal polytope is called an isotope which is transitive on its facets. A polytope or tiling may be called if its vertices form k transitivity classes. A more restrictive term, k-uniform is defined as a figure constructed only from regular polygons. They can be represented visually with colors by different uniform colorings, edge-transitive Face-transitive Peter R. Cromwell, Polyhedra, Cambridge University Press 1997, ISBN 0-521-55432-2, p.369 Transitivity Grünbaum, Branko, Shephard, G. C