Hexadecagon
In mathematics, a hexadecagon is a sixteen-sided polygon. A regular hexadecagon is a hexadecagon in which all angles are equal and all sides are congruent, its Schläfli symbol is and can be constructed as a truncated octagon, t, a twice-truncated square tt. A truncated hexadecagon, t, is a triacontadigon; as 16 = 24, a regular hexadecagon is constructible using compass and straightedge: this was known to ancient Greek mathematicians. Each angle of a regular hexadecagon is 157.5 degrees, the total angle measure of any hexadecagon is 2520 degrees. The area of a regular hexadecagon with edge length t is A = 4 t 2 cot π 16 = 4 t 2 = 4 t 2; because the hexadecagon has a number of sides, a power of two, its area can be computed in terms of the circumradius R by truncating Viète's formula: A = R 2 ⋅ 2 1 ⋅ 2 2 ⋅ 2 2 + 2 = 4 R 2 2 − 2. Since the area of the circumcircle is π R 2, the regular hexadecagon fills 97.45% of its circumcircle. The regular hexadecagon has Dih16 symmetry, order 32. There are 4 dihedral subgroups: Dih8, Dih4, Dih2, Dih1, 5 cyclic subgroups: Z16, Z8, Z4, Z2, Z1, the last implying no symmetry.
On the regular hexadecagon, there are 14 distinct symmetries. John Conway labels full symmetry as r32 and no symmetry is labeled a1; the dihedral symmetries are divided depending on whether they pass through vertices or edges Cyclic symmetries in the middle column are labeled as g for their central gyration orders. The most common high symmetry hexadecagons are d16, a isogonal hexadecagon constructed by eight mirrors can alternate long and short edges, p16, an isotoxal hexadecagon constructed with equal edge lengths, but vertices alternating two different internal angles; these two forms have half the symmetry order of the regular hexadecagon. Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only the g16 subgroup has no degrees of freedom. Coxeter states. In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular hexadecagon, m=8, it can be divided into 28: 4 squares and 3 sets of 8 rhombs.
This decomposition is based with 28 of 1792 faces. The list OEIS: A006245 enumerates the number of solutions as 1232944, including up to 16-fold rotations and chiral forms in reflection. A skew hexadecagon is a skew polygon with edges but not existing on the same plane; the interior of such an hexadecagon is not defined. A skew zig-zag. A regular skew hexadecagon is vertex-transitive with equal edge lengths. In 3-dimensions it will be a zig-zag skew hexadecagon and can be seen in the vertices and side edges of a octagonal antiprism with the same D8d, order 32; the octagrammic antiprism, s and octagrammic crossed-antiprism, s have regular skew octagons. The regular hexadecagon is the Petrie polygon for many higher-dimensional polytopes, shown in these skew orthogonal projections, including: A hexadecagram is a 16-sided star polygon, represented by symbol. There are three regular star polygons, using the same vertices, but connecting every third, fifth or seventh points. There are three compounds: is reduced to 2 as two octagons, is reduced to 4 as four squares and reduces to 2 as two octagrams, is reduced to 8 as eight digons.
Deeper truncations of the regular octagon and octagram can produce isogonal intermediate hexadecagram forms with spaced vertices and two edge lengths. A truncated octagon is a hexadecagon, t=. A quasitruncated octagon, inverted as, is a hexadecagram: t=. A truncated octagram is a hexadecagram: t= and a quasitruncated octagram, inverted as, is a hexadecagram: t=. In the early 16th century, Raphael was the first to construct a perspective image of a regular hexadecagon: the tower in his painting The Ma
Wythoff symbol
In geometry, the Wythoff symbol represents a Wythoff construction of a uniform polyhedron or plane tiling, from a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra. A Wythoff symbol consists of a vertical bar, it represents one uniform polyhedron or tiling, although the same tiling/polyhedron can have different Wythoff symbols from different symmetry generators. For example, the regular cube can be represented by 3 | 4 2 with Oh symmetry, 2 4 | 2 as a square prism with 2 colors and D4h symmetry, as well as 2 2 2 | with 3 colors and D 2 h symmetry. With a slight extension, Wythoff's symbol can be applied to all uniform polyhedra. However, the construction methods do not lead to all uniform tilings in Euclidean or hyperbolic space. In three dimensions, Wythoff's construction begins by choosing a generator point on the triangle. If the distance of this point from each of the sides is non-zero, the point must be chosen to be an equal distance from each edge.
A perpendicular line is dropped between the generator point and every face that it does not lie on. The three numbers in Wythoff's symbol, p, q and r, represent the corners of the Schwarz triangle used in the construction, which are π / p, π / q and π / r radians respectively; the triangle is represented with the same numbers, written. The vertical bar in the symbol specifies a categorical position of the generator point within the fundamental triangle according to the following: p | q r indicates that the generator lies on the corner p, p q | r indicates that the generator lies on the edge between p and q, p q r | indicates that the generator lies in the interior of the triangle. In this notation the mirrors are labeled by the reflection-order of the opposite vertex; the p, q, r values are listed before the bar. The one impossible symbol | p q r implies the generator point is on all mirrors, only possible if the triangle is degenerate, reduced to a point; this unused symbol is therefore arbitrarily reassigned to represent the case where all mirrors are active, but odd-numbered reflected images are ignored.
The resulting figure has rotational symmetry only. The generator point can either be off each mirror, activated or not; this distinction creates 8 possible forms, neglecting one where the generator point is on all the mirrors. The Wythoff symbol is functionally similar to the more general Coxeter-Dynkin diagram, in which each node represents a mirror and the arcs between them – marked with numbers – the angles between the mirrors. A node is circled. There are seven generator points with each set of p, q, r: There are three special cases: p q | – This is a mixture of p q r | and p q s |, containing only the faces shared by both. | p q r – Snub forms are given by this otherwise unused symbol. | p q r s – A unique snub form for U75 that isn't Wythoff-constructible. There are 4 symmetry classes of reflection on the sphere, three in the Euclidean plane. A few of the infinitely many such patterns in the hyperbolic plane are listed. Point groups: dihedral symmetry, p = 2, 3, 4 … tetrahedral symmetry octahedral symmetry icosahedral symmetry Euclidean groups: *442 symmetry: 45°-45°-90° triangle *632 symmetry: 30°-60°-90° triangle *333 symmetry: 60°-60°-60° triangleHyperbolic groups: *732 symmetry *832 symmetry *433 symmetry *443 symmetry *444 symmetry *542 symmetry *642 symmetry...
The above symmetry groups only include the integer solutions on the sphere. The list of Schwarz triangles includes rational numbers, determine the full set of solutions of nonconvex uniform polyhedra. In the tilings above, each triangle is a fundamental domain, colored by and odd reflections. Selected tilings created by the Wythoff con
John Horton Conway
John Horton Conway is an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He has contributed to many branches of recreational mathematics, notably the invention of the cellular automaton called the Game of Life. Conway spent the first half of his long career at the University of Cambridge, in England, the second half at Princeton University in New Jersey, where he now holds the title Professor Emeritus. Conway was born in the son of Cyril Horton Conway and Agnes Boyce, he became interested in mathematics at a early age. By the age of eleven his ambition was to become a mathematician. After leaving sixth form, Conway entered Caius College, Cambridge to study mathematics. Conway, a "terribly introverted adolescent" in school, interpreted his admission to Cambridge as an opportunity to transform himself into a new person: an "extrovert", he was awarded his Bachelor of Arts degree in 1959 and began to undertake research in number theory supervised by Harold Davenport.
Having solved the open problem posed by Davenport on writing numbers as the sums of fifth powers, Conway began to become interested in infinite ordinals. It appears that his interest in games began during his years studying the Cambridge Mathematical Tripos, where he became an avid backgammon player, spending hours playing the game in the common room, he was awarded his doctorate in 1964 and was appointed as College Fellow and Lecturer in Mathematics at the University of Cambridge. After leaving Cambridge in 1986, he took up the appointment to the John von Neumann Chair of Mathematics at Princeton University. Conway is known for the invention of the Game of Life, one of the early examples of a cellular automaton, his initial experiments in that field were done with pen and paper, long before personal computers existed. Since the game was introduced by Martin Gardner in Scientific American in 1970, it has spawned hundreds of computer programs, web sites, articles, it is a staple of recreational mathematics.
There is an extensive wiki devoted to cataloging the various aspects of the game. From the earliest days it has been a favorite in computer labs, both for its theoretical interest and as a practical exercise in programming and data display. At times Conway has said he hates the Game of Life–largely because it has come to overshadow some of the other deeper and more important things he has done; the game did help launch a new branch of mathematics, the field of cellular automata. The Game of Life is now known to be Turing complete. Conway's career is intertwined with mathematics popularizer and Scientific American columnist Martin Gardner; when Gardner featured Conway's Game of Life in his Mathematical Games column in October 1970, it became the most read of all his columns and made Conway an instant celebrity. Gardner and Conway had first corresponded in the late 1950s, over the years Gardner had written about recreational aspects of Conway's work. For instance, he discussed Conway's game of Sprouts and his angel and devil problem.
In the September 1976 column he reviewed Conway's book On Numbers and Games and introduced the public to Conway's surreal numbers. Conferences called Gathering 4 Gardner are held every two years to celebrate the legacy of Martin Gardner, Conway himself has been a featured speaker at these events, discussing various aspects of recreational mathematics. Conway is known for his contributions to combinatorial game theory, a theory of partisan games; this he developed with Elwyn Berlekamp and Richard Guy, with them co-authored the book Winning Ways for your Mathematical Plays. He wrote the book On Numbers and Games which lays out the mathematical foundations of CGT, he is one of the inventors of sprouts, as well as philosopher's football. He developed detailed analyses of many other games and puzzles, such as the Soma cube, peg solitaire, Conway's soldiers, he came up with the angel problem, solved in 2006. He invented a new system of numbers, the surreal numbers, which are related to certain games and have been the subject of a mathematical novel by Donald Knuth.
He invented a nomenclature for exceedingly large numbers, the Conway chained arrow notation. Much of this is discussed in the 0th part of ONAG. In the mid-1960s with Michael Guy, son of Richard Guy, Conway established that there are sixty-four convex uniform polychora excluding two infinite sets of prismatic forms, they discovered the grand antiprism in the only non-Wythoffian uniform polychoron. Conway has suggested a system of notation dedicated to describing polyhedra called Conway polyhedron notation. In the theory of tessellations, he devised the Conway criterion which describes rules for deciding if a prototile will tile the plane, he investigated lattices in higher dimensions, was the first to determine the symmetry group of the Leech lattice. In knot theory, Conway formulated a new variation of the Alexander polynomial and produced a new invariant now called the Conway polynomial. After lying dormant for more than a decade, this concept became central to work in the 1980s on the novel knot polynomials.
Conway further developed tangle theory and invented a system of notation for tabulating knots, nowadays known as Conway notation, while correcting a number of errors in the 19th century knot tables and extending them to include all but four of the non-alternating primes with 11 crossings. See Topology Proceedings 7 118, he was the primary author of the ATLAS of Finite Groups giving prope
Orbifold notation
In geometry, orbifold notation is a system, invented by William Thurston and popularized by the mathematician John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it describes the orbifold obtained by taking the quotient of Euclidean space by the group under consideration. Groups representable in this notation include the point groups on the sphere, the frieze groups and wallpaper groups of the Euclidean plane, their analogues on the hyperbolic plane; the following types of Euclidean transformation can occur in a group described by orbifold notation: reflection through a line translation by a vector rotation of finite order around a point infinite rotation around a line in 3-space glide-reflection, i.e. reflection followed by translation. All translations which occur are assumed to form a discrete subgroup of the group symmetries being described.
Each group is denoted in orbifold notation by a finite string made up from the following symbols: positive integers 1, 2, 3, … the infinity symbol, ∞ the asterisk, * the symbol o, called a wonder and a handle because it topologically represents a torus closed surface. Patterns repeat by two translation; the symbol ×, called a miracle and represents a topological crosscap where a pattern repeats as a mirror image without crossing a mirror line. A string written in boldface represents a group of symmetries of Euclidean 3-space. A string not written in boldface represents a group of symmetries of the Euclidean plane, assumed to contain two independent translations; each symbol corresponds to a distinct transformation: an integer n to the left of an asterisk indicates a rotation of order n around a gyration point an integer n to the right of an asterisk indicates a transformation of order 2n which rotates around a kaleidoscopic point and reflects through a line an × indicates a glide reflection the symbol ∞ indicates infinite rotational symmetry around a line.
By abuse of language, we might say that such a group is a subgroup of symmetries of the Euclidean plane with only one independent translation. The frieze groups occur in this way; the exceptional symbol o indicates that there are two linearly independent translations. An orbifold symbol is called good if it is not one of the following: p, pq, *p, *pq, for p,q>=2, p≠q. An object is chiral; the corresponding orbifold is non-orientable otherwise. The Euler characteristic of an orbifold can be read from its Conway symbol; each feature has a value: n without or before an asterisk counts as n − 1 n n after an asterisk counts as n − 1 2 n asterisk and × count as 1 o counts as 2. Subtracting the sum of these values from 2 gives the Euler characteristic. If the sum of the feature values is 2, the order is infinite, i.e. the notation represents a wallpaper group or a frieze group. Indeed, Conway's "Magic Theorem" indicates that the 17 wallpaper groups are those with the sum of the feature values equal to 2.
Otherwise, the order is 2 divided by the Euler characteristic. The following groups are isomorphic: 1* and *11 22 and 221 *22 and *221 2* and 2*1; this is. The symmetry of a 2D object without translational symmetry can be described by the 3D symmetry type by adding a third dimension to the object which does not add or spoil symmetry. For example, for a 2D image we can consider a piece of carton with that image displayed on one side, thus we have n• and *n•. The bullet is added on one- and two-dimensional groups to imply the existence of a fixed point. A 1D image can be drawn horizontally on a piece of carton, with a provision to avoid additional symmetry with respect to the line of the image, e.g. by drawing a horizontal bar under the image. Thus the discrete symmetry groups in one dimension are *•, *1•, ∞• and *∞•. Another way of constructing a 3D object from a 1D or 2D object for describing the symmetry is taking the Cartesian product of the object and an asymmetric 2D or 1D object, respectively.
*Schönflies's point group notation is extended here as infinite cases of the equivalent dihedral points symmetries §The diagram shows one fundamental domain in yellow, with reflection lines in blue, glide reflection lines in dashed green, translation normals in red, 2-fold gyration points as small green squares. A first few hyperbolic groups, ordered by their Euler characteristic are: Mutation of orbifolds Fibrifold notation - an extension of orbifold notation for 3d space groups John H. Conway, Olaf Delgado Friedrichs, Daniel H. Huson, W
Hyperbolic geometry
In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R. Hyperbolic plane geometry is the geometry of saddle surfaces and pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. A modern use of hyperbolic geometry is in the theory of special relativity Minkowski spacetime and gyrovector space; when geometers first realised they were working with something other than the standard Euclidean geometry they described their geometry under many different names. In the former Soviet Union, it is called Lobachevskian geometry, named after one of its discoverers, the Russian geometer Nikolai Lobachevsky; this page is about the 2-dimensional hyperbolic geometry and the differences and similarities between Euclidean and hyperbolic geometry. Hyperbolic geometry can be extended to three and more dimensions.
Hyperbolic geometry is more related to Euclidean geometry than it seems: the only axiomatic difference is the parallel postulate. When the parallel postulate is removed from Euclidean geometry the resulting geometry is absolute geometry. There are two kinds of absolute geometry and hyperbolic. All theorems of absolute geometry, including the first 28 propositions of book one of Euclid's Elements, are valid in Euclidean and hyperbolic geometry. Propositions 27 and 28 of Book One of Euclid's Elements prove the existence of parallel/non-intersecting lines; this difference has many consequences: concepts that are equivalent in Euclidean geometry are not equivalent in hyperbolic geometry. Further, because of the angle of parallelism, hyperbolic geometry has an absolute scale, a relation between distance and angle measurements. Single lines in hyperbolic geometry have the same properties as single straight lines in Euclidean geometry. For example, two points uniquely define a line, lines can be infinitely extended.
Two intersecting lines have the same properties as two intersecting lines in Euclidean geometry. For example, two lines can intersect in no more than one point, intersecting lines have equal opposite angles, adjacent angles of intersecting lines are supplementary; when we add a third line there are properties of intersecting lines that differ from intersecting lines in Euclidean geometry. For example, given 2 intersecting lines there are infinitely many lines that do not intersect either of the given lines; these properties all are independent of the model used if the lines may look radically different. Non-intersecting lines in hyperbolic geometry have properties that differ from non-intersecting lines in Euclidean geometry: For any line R and any point P which does not lie on R, in the plane containing line R and point P there are at least two distinct lines through P that do not intersect R; this implies that there are through P an infinite number of coplanar lines that do not intersect R.
These non-intersecting lines are divided into two classes: Two of the lines are limiting parallels: there is one in the direction of each of the ideal points at the "ends" of R, asymptotically approaching R, always getting closer to R, but never meeting it. All other non-intersecting lines have a point of minimum distance and diverge from both sides of that point, are called ultraparallel, diverging parallel or sometimes non-intersecting; some geometers use parallel lines instead of limiting parallel lines, with ultraparallel lines being just non-intersecting. These limiting parallels make an angle θ with PB. For ultraparallel lines, the ultraparallel theorem states that there is a unique line in the hyperbolic plane, perpendicular to each pair of ultraparallel lines. In hyperbolic geometry, the circumference of a circle of radius r is greater than 2 π r. Let R = 1 − K, where K is the Gaussian curvature of the plane. In hyperbolic geometry, K is negative, so the square root is of a positive number.
The circumference of a circle of radius r is equal to: 2 π R sinh r R. And the area of the enclosed disk is: 4 π R 2 sinh 2 r 2 R = 2 π R 2. Therefore, in hyperbolic geometry the ratio of a circle's circumference to its radius is always greater than 2 π, though
Triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, C is denoted △ A B C. In Euclidean geometry any three points, when non-collinear, determine a unique triangle and a unique plane. In other words, there is only one plane that contains that triangle, every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; this article is about triangles in Euclidean geometry, in particular, the Euclidean plane, except where otherwise noted. Triangles can be classified according to the lengths of their sides: An equilateral triangle has all sides the same length. An equilateral triangle is a regular polygon with all angles measuring 60°. An isosceles triangle has two sides of equal length. An isosceles triangle has two angles of the same measure, namely the angles opposite to the two sides of the same length; some mathematicians define an isosceles triangle to have two equal sides, whereas others define an isosceles triangle as one with at least two equal sides.
The latter definition would make all equilateral triangles isosceles triangles. The 45–45–90 right triangle, which appears in the tetrakis square tiling, is isosceles. A scalene triangle has all its sides of different lengths. Equivalently, it has all angles of different measure. Hatch marks called tick marks, are used in diagrams of triangles and other geometric figures to identify sides of equal lengths. A side can be marked with a pattern of short line segments in the form of tally marks. In a triangle, the pattern is no more than 3 ticks. An equilateral triangle has the same pattern on all 3 sides, an isosceles triangle has the same pattern on just 2 sides, a scalene triangle has different patterns on all sides since no sides are equal. Patterns of 1, 2, or 3 concentric arcs inside the angles are used to indicate equal angles. An equilateral triangle has the same pattern on all 3 angles, an isosceles triangle has the same pattern on just 2 angles, a scalene triangle has different patterns on all angles since no angles are equal.
Triangles can be classified according to their internal angles, measured here in degrees. A right triangle has one of its interior angles measuring 90°; the side opposite to the right angle is the longest side of the triangle. The other two sides are called the catheti of the triangle. Right triangles obey the Pythagorean theorem: the sum of the squares of the lengths of the two legs is equal to the square of the length of the hypotenuse: a2 + b2 = c2, where a and b are the lengths of the legs and c is the length of the hypotenuse. Special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3–4–5 right triangle, where 32 + 42 = 52. In this situation, 3, 4, 5 are a Pythagorean triple; the other one is an isosceles triangle. Triangles that do not have an angle measuring 90° are called oblique triangles. A triangle with all interior angles measuring less than 90° is an acute triangle or acute-angled triangle.
If c is the length of the longest side a2 + b2 > c2, where a and b are the lengths of the other sides. A triangle with one interior angle measuring more than 90° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side a2 + b2 < c2, where a and b are the lengths of the other sides. A triangle with an interior angle of 180° is degenerate. A right degenerate triangle has collinear vertices. A triangle that has two angles with the same measure has two sides with the same length, therefore it is an isosceles triangle, it follows that in a triangle where all angles have the same measure, all three sides have the same length, such a triangle is therefore equilateral. Triangles are assumed to be two-dimensional plane figures. In rigorous treatments, a triangle is therefore called a 2-simplex. Elementary facts about triangles were presented by Euclid in books 1–4 of his Elements, around 300 BC; the sum of the measures of the interior angles of a triangle in Euclidean space is always 180 degrees.
This fact is equivalent to Euclid's parallel postulate. This allows determination of the measure of the third angle of any triangle given the measure of two angles. An exterior angle of a triangle is an angle, a linear pair to an interior angle; the measure of an exterior angle of a triangle is equal to the sum of the measures of the two interior angles that are not adjacent to it. The sum of the measures of the three exterior angles of any triangle is 360 degrees. Two triangles are said to be similar if every angle of one triangle has the same measure as the corresponding angle in the other triangle; the corresponding sides of similar triangles have lengths that are in the same proportion, this property is sufficient to establish similarity. Some basic theorems about similar triangles are: If and only if one pair of internal angles of two triangles have the sam
Conway polyhedron notation
In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations. Conway and Hart extended the idea of using operators, like truncation as defined by Kepler, to build related polyhedra of the same symmetry. For example, tC represents a truncated cube, taC, parsed as t, is a truncated cuboctahedron; the simplest operator dual swaps vertex and face elements. Applied in a series, these operators allow many higher order polyhedra to be generated. Conway defined the operators abdegjkmost, while Hart added r and p. Conway's basic operations are sufficient to generate the Archimedean and Catalan solids from the Platonic solids; some basic operations can be made as composites of others. Implementations named further operators, sometimes referred to as "extended" operators. In general, it is difficult to predict the resulting appearance of the composite of two or more operations from a given seed polyhedron.
For instance, ambo applied twice is the expand operation: aa = e, while a truncation after ambo produces bevel: ta = b. Many basic questions about Conway operators remain open, for instance, how many operators of a given "size" exist. In Conway's notation, operations on polyhedra are applied from right to left. For example, a cuboctahedron is an ambo cube, i.e. a = a C, a truncated cuboctahedron is t = t = t a C. Repeated application of an operator can be denoted with an exponent: j2. In general, Conway operators are not commutative; the resulting polyhedron has a fixed topology, while exact geometry is not specified: it can be thought of as one of many embeddings of a polyhedral graph on the sphere. The polyhedron is put into canonical form. Individual operators can be visualized in terms of "chambers", as below; each white chamber is a rotated version of the others. For achiral operators, the red chambers are a reflection of the white chambers. Achiral and chiral operators are called local symmetry-preserving operations and local operations that preserve orientation-preserving symmetries although the exact definition is a little more restrictive.
The relationship between the number of vertices and faces of the seed and the polyhedron created by the operations listed in this article can be expressed as a matrix M x. When x is the operator, v, e, f are the vertices and faces of the seed, v ′, e ′, f ′ are the vertices and faces of the result M x =; the matrix for the composition of two operators is just the product of the matrixes for the two operators. Distinct operators may have the same matrix, for p and l; the edge count of the result is an integer multiple d of that of the seed: this is called the inflation rate, or the edge factor. The simplest operators, the identity operator S and the dual operator d, have simple matrix forms: M S = = I 3, M d = Two dual operators cancel out; when applied to other operators, the dual operator corresponds to horizontal and vertical reflections of the matrix. Operators can be grouped into groups of four by identifying the operators x, xd, dx, dxd. In this article, only the matrix for x is given. Hart introduced the reflection operator r.
This is not a LOPSP, since it does not preserve orientation. R has no effect on achiral seeds, rr returns the original seed. An overline can be used to indicate the other chiral form of an operator. R does not affect the matrix. An operation is irreducible if it cannot be expressed as a composition of operators aside from d and r; the majority of Conway's original operators are irreducible: the exceptions are e, b, o, m. Some open questions about Conway