Star
A star is type of astronomical object consisting of a luminous spheroid of plasma held together by its own gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth; the most prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the estimated 300 sextillion stars in the Universe are invisible to the naked eye from Earth, including all stars outside our galaxy, the Milky Way. For at least a portion of its life, a star shines due to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star's interior and radiates into outer space. All occurring elements heavier than helium are created by stellar nucleosynthesis during the star's lifetime, for some stars by supernova nucleosynthesis when it explodes.
Near the end of its life, a star can contain degenerate matter. Astronomers can determine the mass, age and many other properties of a star by observing its motion through space, its luminosity, spectrum respectively; the total mass of a star is the main factor. Other characteristics of a star, including diameter and temperature, change over its life, while the star's environment affects its rotation and movement. A plot of the temperature of many stars against their luminosities produces a plot known as a Hertzsprung–Russell diagram. Plotting a particular star on that diagram allows the age and evolutionary state of that star to be determined. A star's life begins with the gravitational collapse of a gaseous nebula of material composed of hydrogen, along with helium and trace amounts of heavier elements; when the stellar core is sufficiently dense, hydrogen becomes converted into helium through nuclear fusion, releasing energy in the process. The remainder of the star's interior carries energy away from the core through a combination of radiative and convective heat transfer processes.
The star's internal pressure prevents it from collapsing further under its own gravity. A star with mass greater than 0.4 times the Sun's will expand to become a red giant when the hydrogen fuel in its core is exhausted. In some cases, it will fuse heavier elements in shells around the core; as the star expands it throws a part of its mass, enriched with those heavier elements, into the interstellar environment, to be recycled as new stars. Meanwhile, the core becomes a stellar remnant: a white dwarf, a neutron star, or if it is sufficiently massive a black hole. Binary and multi-star systems consist of two or more stars that are gravitationally bound and move around each other in stable orbits; when two such stars have a close orbit, their gravitational interaction can have a significant impact on their evolution. Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy. Stars have been important to civilizations throughout the world, they have used for celestial navigation and orientation.
Many ancient astronomers believed that stars were permanently affixed to a heavenly sphere and that they were immutable. By convention, astronomers grouped stars into constellations and used them to track the motions of the planets and the inferred position of the Sun; the motion of the Sun against the background stars was used to create calendars, which could be used to regulate agricultural practices. The Gregorian calendar used nearly everywhere in the world, is a solar calendar based on the angle of the Earth's rotational axis relative to its local star, the Sun; the oldest dated star chart was the result of ancient Egyptian astronomy in 1534 BC. The earliest known star catalogues were compiled by the ancient Babylonian astronomers of Mesopotamia in the late 2nd millennium BC, during the Kassite Period; the first star catalogue in Greek astronomy was created by Aristillus in 300 BC, with the help of Timocharis. The star catalog of Hipparchus included 1020 stars, was used to assemble Ptolemy's star catalogue.
Hipparchus is known for the discovery of the first recorded nova. Many of the constellations and star names in use today derive from Greek astronomy. In spite of the apparent immutability of the heavens, Chinese astronomers were aware that new stars could appear. In 185 AD, they were the first to observe and write about a supernova, now known as the SN 185; the brightest stellar event in recorded history was the SN 1006 supernova, observed in 1006 and written about by the Egyptian astronomer Ali ibn Ridwan and several Chinese astronomers. The SN 1054 supernova, which gave birth to the Crab Nebula, was observed by Chinese and Islamic astronomers. Medieval Islamic astronomers gave Arabic names to many stars that are still used today and they invented numerous astronomical instruments that could compute the positions of the stars, they built the first large observatory research institutes for the purpose of producing Zij star catalogues. Among these, the Book of Fixed Stars was written by the Persian astronomer Abd al-Rahman al-Sufi, who observed a number of stars, star clusters and galaxies.
According to A. Zahoor, in the 11th century, the Persian polymath scholar Abu Rayhan Biruni described the Milky
Astrometry
Astrometry is the branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. The information obtained by astrometric measurements provides information on the kinematics and physical origin of the Solar System and our galaxy, the Milky Way; the history of astrometry is linked to the history of star catalogues, which gave astronomers reference points for objects in the sky so they could track their movements. This can be dated back to Hipparchus, who around 190 BC used the catalogue of his predecessors Timocharis and Aristillus to discover Earth's precession. In doing so, he developed the brightness scale still in use today. Hipparchus compiled a catalogue with their positions. Hipparchus's successor, included a catalogue of 1,022 stars in his work the Almagest, giving their location and brightness. In the 10th century, Abd al-Rahman al-Sufi carried out observations on the stars and described their positions and star color. Ibn Yunus observed more than 10,000 entries for the Sun's position for many years using a large astrolabe with a diameter of nearly 1.4 metres.
His observations on eclipses were still used centuries in Simon Newcomb's investigations on the motion of the Moon, while his other observations of the motions of the planets Jupiter and Saturn inspired Laplace's Obliquity of the Ecliptic and Inequalities of Jupiter and Saturn. In the 15th century, the Timurid astronomer Ulugh Beg compiled the Zij-i-Sultani, in which he catalogued 1,019 stars. Like the earlier catalogs of Hipparchus and Ptolemy, Ulugh Beg's catalogue is estimated to have been precise to within 20 minutes of arc. In the 16th century, Tycho Brahe used improved instruments, including large mural instruments, to measure star positions more than with a precision of 15–35 arcsec. Taqi al-Din measured the right ascension of the stars at the Constantinople Observatory of Taqi ad-Din using the "observational clock" he invented; when telescopes became commonplace, setting circles sped measurements James Bradley first tried to measure stellar parallaxes in 1729. The stellar movement proved too insignificant for his telescope, but he instead discovered the aberration of light and the nutation of the Earth's axis.
His cataloguing of 3222 stars was refined in 1807 by Friedrich Bessel, the father of modern astrometry. He made the first measurement of stellar parallax: 0.3 arcsec for the binary star 61 Cygni. Being difficult to measure, only about 60 stellar parallaxes had been obtained by the end of the 19th century by use of the filar micrometer. Astrographs using astronomical photographic plates sped the process in the early 20th century. Automated plate-measuring machines and more sophisticated computer technology of the 1960s allowed more efficient compilation of star catalogues. In the 1980s, charge-coupled devices replaced photographic plates and reduced optical uncertainties to one milliarcsecond; this technology made astrometry less expensive. In 1989, the European Space Agency's Hipparcos satellite took astrometry into orbit, where it could be less affected by mechanical forces of the Earth and optical distortions from its atmosphere. Operated from 1989 to 1993, Hipparcos measured large and small angles on the sky with much greater precision than any previous optical telescopes.
During its 4-year run, the positions and proper motions of 118,218 stars were determined with an unprecedented degree of accuracy. A new "Tycho catalog" drew together a database of 1,058,332 to within 20-30 mas. Additional catalogues were compiled for the 23,882 double/multiple stars and 11,597 variable stars analyzed during the Hipparcos mission. Today, the catalogue most used is USNO-B1.0, an all-sky catalogue that tracks proper motions, positions and other characteristics for over one billion stellar objects. During the past 50 years, 7,435 Schmidt camera plates were used to complete several sky surveys that make the data in USNO-B1.0 accurate to within 0.2 arcsec. Apart from the fundamental function of providing astronomers with a reference frame to report their observations in, astrometry is fundamental for fields like celestial mechanics, stellar dynamics and galactic astronomy. In observational astronomy, astrometric techniques help identify stellar objects by their unique motions, it is instrumental for keeping time, in that UTC is the atomic time synchronized to Earth's rotation by means of exact astronomical observations.
Astrometry is an important step in the cosmic distance ladder because it establishes parallax distance estimates for stars in the Milky Way. Astrometry has been used to support claims of extrasolar planet detection by measuring the displacement the proposed planets cause in their parent star's apparent position on the sky, due to their mutual orbit around the center of mass of the system. Astrometry is more accurate in space missions that are not affected by the distorting effects of the Earth's atmosphere. NASA's planned Space Interferometry Mission was to utilize astrometric techniques to detect terrestrial planets orbiting 200 or so of the nearest solar-type stars; the European Space Agency's Gaia Mission, launched in 2013, applies astrometric techniques in its stellar census. In addition to the detection of exoplanets, it can be used to determine their mass. Astrometric measurements are used by astrophysicists to constrain certain models in celestial mechanics. By measuring the velocities of pulsars, it is possible to put a limit on the asymmetry of supernova explosions.
A
SIMBAD
SIMBAD is an astronomical database of objects beyond the Solar System. It is maintained by the Centre de données astronomiques de France. SIMBAD was created by merging the Catalog of Stellar Identifications and the Bibliographic Star Index as they existed at the Meudon Computer Centre until 1979, expanded by additional source data from other catalogues and the academic literature; the first on-line interactive version, known as Version 2, was made available in 1981. Version 3, developed in the C language and running on UNIX stations at the Strasbourg Observatory, was released in 1990. Fall of 2006 saw the release of Version 4 of the database, now stored in PostgreSQL, the supporting software, now written in Java; as of 10 February 2017, SIMBAD contains information for 9,099,070 objects under 24,529,080 different names, with 327,634 bibliographical references and 15,511,733 bibliographic citations. The minor planet 4692 SIMBAD was named in its honour. Planetary Data System – NASA's database of information on SSSB, maintained by JPL and Caltech.
NASA/IPAC Extragalactic Database – a database of information on objects outside the Milky Way maintained by JPL. NASA Exoplanet Archive – an online astronomical exoplanet catalog and data service Bibcode SIMBAD, Strasbourg SIMBAD, Harvard
R Coronae Borealis variable
An R Coronae Borealis variable is an eruptive variable star that varies in luminosity in two modes, one low amplitude pulsation, one irregular, unpredictably-sudden fading by 1 to 9 magnitudes. The prototype star R Coronae Borealis was discovered by the English amateur astronomer Edward Pigott in 1795, who first observed the enigmatic fadings of the star. Only about 150 RCB stars are known in our Galaxy while up to 1000 were expected, making this class a rare kind of star, it is suspected that R Coronae Borealis stars – rare hydrogen-deficient and carbon-rich supergiant stars – are the product of mergers of white-dwarfs in the intermediary mass regime. The fading is caused by condensation of carbon to soot, making the star fade in visible light while measurements in infrared light exhibit no real luminosity decrease. R Coronae Borealis variables are supergiant stars in the spectral classes F and G, with typical C2 and CN molecular bands, characteristic of yellow supergiants. RCB star atmospheres do however lack hydrogen by an abundance of 1 part per 1,000 down to 1 part per 1,000,000 relative to helium and other chemical elements, while the universal abundance of hydrogen is about 3 to 1 relative to helium.
There is a considerable variation in spectrum between various RCB specimens. Most of the stars with known spectrum are either F to G class supergiants, or a comparatively cooler C-R type carbon star supergiant. Three of the stars are however of the "blue" B type, for example VZ Sagittarii. Four stars are inexplicably poor in iron absorption lines in the spectrum; the constant features are prominent carbon lines, strong atmospheric hydrogen deficiencies, the intermittent fadings. The DY Persei variables have been considered a sub-class of R CrB variable, although they are less luminous carbon-rich AGB stars and may be unrelated. Two main models for carbon dust formation near the R Coronae Borealis stars have been proposed, one model that presumes the dust forms at a distance of 20 star radii from the center of the star, one model that presumes that the dust forms in the photosphere of the star; the rationale for the 20 radii formation is that the carbon condensation temperature is 1,500 K, while the photospheric dust model was formulated by the 20 radii model's failure to explain the fast decline of the RCBs' light curves just before reaching minimum.
The 20 radii model requires a large and thereby long-time buildup of the obstructing dust cloud, making the fast light decline hard to comprehend. The alternate theory of photospheric buildup of carbon dust in a 4,500–6,500 K temperature environment could be explained by condensations in the low pressure parts of shock fronts – being detected in the atmosphere of RY Sagittarii – a condensation that causes local runaway cooling, allowing carbon dust to form; the formation of the stars themselves is unclear. Standard stellar evolution models do not produce large luminous stars with zero hydrogen; the two main theories to explain these stars are both somewhat exotic befitting such rare stars. In one, a merger occurs between two white dwarf stars, one a Helium white dwarf and the other a carbon-oxygen white dwarf. White dwarfs are lacking in hydrogen and the resultant star would lack that element; the second model postulates a massive convective event at the onset of burning of an outer helium shell, causing the little remaining atmospheric Hydrogen to be turned over into the interior of the star.
It is possible that the diversity of R CrB stars is caused by a diversity of formation mechanisms, relating them to extreme helium stars and hydrogen-deficient carbon stars. This list contains all the R CrB stars listed in the GCVS, as well as other notable examples. DY Persei is not included. Thorne–Żytkow object R Coronae Borealis stars, by C. Simon Jeffrey, Armagh Observatory Northern Ireland Entry in the Encyclopedia of Astrobiology and Spaceflight The R Coronae Borealis Stars, by Geoffrey C. Clayton, from SAO/NASA Astrophysics Data System Variable Star of the Month, January, 2000: R Coronae Borealis, at the AAVSO website
Parsec
The parsec is a unit of length used to measure large distances to astronomical objects outside the Solar System. A parsec is defined as the distance at which one astronomical unit subtends an angle of one arcsecond, which corresponds to 648000/π astronomical units. One parsec is equal to 31 trillion kilometres or 19 trillion miles; the nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun. Most of the stars visible to the unaided eye in the night sky are within 500 parsecs of the Sun; the parsec unit was first suggested in 1913 by the British astronomer Herbert Hall Turner. Named as a portmanteau of the parallax of one arcsecond, it was defined to make calculations of astronomical distances from only their raw observational data quick and easy for astronomers. For this reason, it is the unit preferred in astronomy and astrophysics, though the light-year remains prominent in popular science texts and common usage. Although parsecs are used for the shorter distances within the Milky Way, multiples of parsecs are required for the larger scales in the universe, including kiloparsecs for the more distant objects within and around the Milky Way, megaparsecs for mid-distance galaxies, gigaparsecs for many quasars and the most distant galaxies.
In August 2015, the IAU passed Resolution B2, which, as part of the definition of a standardized absolute and apparent bolometric magnitude scale, mentioned an existing explicit definition of the parsec as 648000/π astronomical units, or 3.08567758149137×1016 metres. This corresponds to the small-angle definition of the parsec found in many contemporary astronomical references; the parsec is defined as being equal to the length of the longer leg of an elongated imaginary right triangle in space. The two dimensions on which this triangle is based are its shorter leg, of length one astronomical unit, the subtended angle of the vertex opposite that leg, measuring one arc second. Applying the rules of trigonometry to these two values, the unit length of the other leg of the triangle can be derived. One of the oldest methods used by astronomers to calculate the distance to a star is to record the difference in angle between two measurements of the position of the star in the sky; the first measurement is taken from the Earth on one side of the Sun, the second is taken half a year when the Earth is on the opposite side of the Sun.
The distance between the two positions of the Earth when the two measurements were taken is twice the distance between the Earth and the Sun. The difference in angle between the two measurements is twice the parallax angle, formed by lines from the Sun and Earth to the star at the distant vertex; the distance to the star could be calculated using trigonometry. The first successful published direct measurements of an object at interstellar distances were undertaken by German astronomer Friedrich Wilhelm Bessel in 1838, who used this approach to calculate the 3.5-parsec distance of 61 Cygni. The parallax of a star is defined as half of the angular distance that a star appears to move relative to the celestial sphere as Earth orbits the Sun. Equivalently, it is the subtended angle, from that star's perspective, of the semimajor axis of the Earth's orbit; the star, the Sun and the Earth form the corners of an imaginary right triangle in space: the right angle is the corner at the Sun, the corner at the star is the parallax angle.
The length of the opposite side to the parallax angle is the distance from the Earth to the Sun (defined as one astronomical unit, the length of the adjacent side gives the distance from the sun to the star. Therefore, given a measurement of the parallax angle, along with the rules of trigonometry, the distance from the Sun to the star can be found. A parsec is defined as the length of the side adjacent to the vertex occupied by a star whose parallax angle is one arcsecond; the use of the parsec as a unit of distance follows from Bessel's method, because the distance in parsecs can be computed as the reciprocal of the parallax angle in arcseconds. No trigonometric functions are required in this relationship because the small angles involved mean that the approximate solution of the skinny triangle can be applied. Though it may have been used before, the term parsec was first mentioned in an astronomical publication in 1913. Astronomer Royal Frank Watson Dyson expressed his concern for the need of a name for that unit of distance.
He proposed the name astron, but mentioned that Carl Charlier had suggested siriometer and Herbert Hall Turner had proposed parsec. It was Turner's proposal. In the diagram above, S represents the Sun, E the Earth at one point in its orbit, thus the distance ES is one astronomical unit. The angle SDE is one arcsecond so by definition D is a point in space at a distance of one parsec from the Sun. Through trigonometry, the distance SD is calculated as follows: S D = E S tan 1 ″ S D ≈ E S 1 ″ = 1 au 1 60 × 60 × π
Star catalogue
A star catalogue or star catalog, is an astronomical catalogue that lists stars. In astronomy, many stars are referred to by catalogue numbers. There are a great many different star catalogues which have been produced for different purposes over the years, this article covers only some of the more quoted ones. Star catalogues were compiled by many different ancient people, including the Babylonians, Chinese and Arabs, they were sometimes accompanied by a star chart for illustration. Most modern catalogues are available in electronic format and can be downloaded from space agencies data centres. Completeness and accuracy is described by the weakest apparent magnitude V and the accuracy of the positions. From their existing records, it is known that the ancient Egyptians recorded the names of only a few identifiable constellations and a list of thirty-six decans that were used as a star clock; the Egyptians called the circumpolar star "the star that cannot perish" and, although they made no known formal star catalogues, they nonetheless created extensive star charts of the night sky which adorn the coffins and ceilings of tomb chambers.
Although the ancient Sumerians were the first to record the names of constellations on clay tablets, the earliest known star catalogues were compiled by the ancient Babylonians of Mesopotamia in the late 2nd millennium BC, during the Kassite Period. They are better known by their Assyrian-era name'Three Stars Each'; these star catalogues, written on clay tablets, listed thirty-six stars: twelve for "Anu" along the celestial equator, twelve for "Ea" south of that, twelve for "Enlil" to the north. The Mul. Apin lists, dated to sometime before the Neo-Babylonian Empire, are direct textual descendants of the "Three Stars Each" lists and their constellation patterns show similarities to those of Greek civilization. In Ancient Greece, the astronomer and mathematician Eudoxus laid down a full set of the classical constellations around 370 BC, his catalogue Phaenomena, rewritten by Aratus of Soli between 275 and 250 BC as a didactic poem, became one of the most consulted astronomical texts in antiquity and beyond.
It contains descriptions of the positions of the stars, the shapes of the constellations and provided information on their relative times of rising and setting. In the 3rd century BC, the Greek astronomers Timocharis of Alexandria and Aristillus created another star catalogue. Hipparchus completed his star catalogue in 129 BC, which he compared to Timocharis' and discovered that the longitude of the stars had changed over time; this led him to determine the first value of the precession of the equinoxes. In the 2nd century, Ptolemy of Roman Egypt published a star catalogue as part of his Almagest, which listed 1,022 stars visible from Alexandria. Ptolemy's catalogue was based entirely on an earlier one by Hipparchus, it remained the standard star catalogue in the Arab worlds for over eight centuries. The Islamic astronomer al-Sufi updated it in 964, the star positions were redetermined by Ulugh Beg in 1437, but it was not superseded until the appearance of the thousand-star catalogue of Tycho Brahe in 1598.
Although the ancient Vedas of India specified how the ecliptic was to be divided into twenty-eight nakshatra, Indian constellation patterns were borrowed from Greek ones sometime after Alexander's conquests in Asia in the 4th century BC. The earliest known inscriptions for Chinese star names were written on oracle bones and date to the Shang Dynasty. Sources dating from the Zhou Dynasty which provide star names include the Zuo Zhuan, the Shi Jing, the "Canon of Yao" in the Book of Documents; the Lüshi Chunqiu written by the Qin statesman Lü Buwei provides most of the names for the twenty-eight mansions. An earlier lacquerware chest found in the Tomb of Marquis Yi of Zeng contains a complete list of the names of the twenty-eight mansions. Star catalogues are traditionally attributed to Shi Shen and Gan De, two rather obscure Chinese astronomers who may have been active in the 4th century BC of the Warring States period; the Shi Shen astronomy is attributed to Shi Shen, the Astronomic star observation to Gan De.
It was not until the Han Dynasty that astronomers started to observe and record names for all the stars that were apparent in the night sky, not just those around the ecliptic. A star catalogue is featured in one of the chapters of the late 2nd-century-BC history work Records of the Grand Historian by Sima Qian and contains the "schools" of Shi Shen and Gan De's work. Sima's catalogue—the Book of Celestial Offices —includes some 90 constellations, the stars therein named after temples, ideas in philosophy, locations such as markets and shops, different people such as farmers and soldiers. For his Spiritual Constitution of the Universe of 120 AD, the astronomer Zhang Heng compiled a star catalogue comprising 124 constellations. Chinese constellation names were adopted by the Koreans and Japanese. A large number of star catalogues were published by Muslim astronomers in the medieval Islamic world; these were Zij treatises, including Arzachel's Tables of Toledo, the Maragheh observatory's Zij-i Ilkhani and Ulugh Beg's Zij-i-Sultani.
Other fam
Aquarius (constellation)
Aquarius is a constellation of the zodiac, situated between Capricornus and Pisces. Its name is Latin for "water-carrier" or "cup-carrier", its symbol is, a representation of water. Aquarius is one of the oldest of the recognized constellations along the zodiac, it was one of the 48 constellations listed by the 2nd century astronomer Ptolemy, it remains one of the 88 modern constellations. It is found in a region called the Sea due to its profusion of constellations with watery associations such as Cetus the whale, Pisces the fish, Eridanus the river. At apparent magnitude 2.9, Beta Aquarii is the brightest star in the constellation. Aquarius is identified as GU. LA "The Great One" in the Babylonian star catalogues and represents the god Ea himself, depicted holding an overflowing vase; the Babylonian star-figure appears on entitlement stones and cylinder seals from the second millennium. It contained the winter solstice in the Early Bronze Age. In Old Babylonian astronomy, Ea was the ruler of the southernmost quarter of the Sun's path, the "Way of Ea", corresponding to the period of 45 days on either side of winter solstice.
Aquarius was associated with the destructive floods that the Babylonians experienced, thus was negatively connoted. In Ancient Egypt astronomy, Aquarius was associated with the annual flood of the Nile. In the Greek tradition, the constellation came to be represented as a single vase from which a stream poured down to Piscis Austrinus; the name in the Hindu zodiac is kumbha "water-pitcher". In Greek mythology, Aquarius is sometimes associated with Deucalion, the son of Prometheus who built a ship with his wife Pyrrha to survive an imminent flood, they sailed for nine days before washing ashore on Mount Parnassus. Aquarius is sometimes identified with beautiful Ganymede, a youth in Greek mythology and the son of Trojan king Tros, taken to Mount Olympus by Zeus to act as cup-carrier to the gods. Neighboring Aquila represents the eagle, under Zeus' command. An alternative version of the tale recounts Ganymede's kidnapping by the goddess of the dawn, motivated by her affection for young men, yet another figure associated with the water bearer is Cecrops I, a king of Athens who sacrificed water instead of wine to the gods.
In the first century, Ptolemy's Almagest established the common Western depiction of Aquarius. His water jar, an asterism itself, consists of Gamma, Pi, Zeta Aquarii; the water bearer's head is represented by 5th magnitude 25 Aquarii while his left shoulder is Beta Aquarii. In Chinese astronomy, the stream of water flowing from the Water Jar was depicted as the "Army of Yu-Lin"; the name "Yu-lin" means "feathers and forests", referring to the numerous light-footed soldiers from the northern reaches of the empire represented by these faint stars. The constellation's stars were the most numerous of any Chinese constellation, numbering 45, the majority of which were located in modern Aquarius; the celestial army was protected by the wall Leibizhen, which counted Iota, Lambda and Sigma Aquarii among its 12 stars. 88, 89, 98 Aquarii represent Fou-youe, the axes used as weapons and for hostage executions. In Aquarius is Loui-pi-tchin, the ramparts that stretch from 29 and 27 Piscium and 33 and 30 Aquarii through Phi, Lambda and Iota Aquarii to Delta, Gamma and Epsilon Capricorni.
Near the border with Cetus, the axe Fuyue was represented by three stars. Tienliecheng has a disputed position; the Water Jar asterism was seen to the ancient Chinese as Fenmu. Nearby, the emperors' mausoleum Xiuliang stood, demarcated by Kappa Aquarii and three other collinear stars. Ku and Qi, each composed of two stars, were located in the same region. Three of the Chinese lunar mansions shared their name with constellations. Nu the name for the 10th lunar mansion, was a handmaiden represented by Epsilon, Mu, 3, 4 Aquarii; the 11th lunar mansion shared its name with the constellation Xu, formed by Beta Aquarii and Alpha Equulei. Wei, the rooftop and 12th lunar mansion, was a V-shaped constellation formed by Alpha Aquarii, Theta Pegasi, Epsilon Pegasi. Despite both its prominent position on the zodiac and its large size, Aquarius has no bright stars, its four brightest stars being less than magnitude 2. However, recent research has shown that there are several stars lying within its borders that possess planetary systems.
The two brightest stars and Beta Aquarii, are luminous yellow supergiants, of spectral types G0Ib and G2Ib that were once hot blue-white B-class main sequence stars 5 to 9 times as massive as the Sun. The two are moving through space perpendicular to the plane of the Milky Way. Just shading Alpha, Beta Aquarii is the brightest star in Aquarius with an apparent magnitude of 2.91. It has the proper name of Sadalsuud. Having cooled and swollen to around 50 times the Sun