1.
60 (number)
–
60 is the natural number following 59 and preceding 61. Being three times 20, it is called three score in older literature. It is a number, with divisors 1,2,3,4,5,6,10,12,15,20,30. Because it is the sum of its divisors, it is a unitary perfect number. Being ten times a number, it is a semiperfect number. It is the smallest number divisible by the numbers 1 to 6 and it is the smallest number with exactly 12 divisors. It is the sum of a pair of twin primes and the sum of four consecutive primes and it is adjacent to two primes. It is the smallest number that is the sum of two odd primes in six ways, the smallest non-solvable group has order 60. There are four Archimedean solids with 60 vertices, the icosahedron, the rhombicosidodecahedron, the snub dodecahedron. The skeletons of these polyhedra form 60-node vertex-transitive graphs, there are also two Archimedean solids with 60 edges, the snub cube and the icosidodecahedron. The skeleton of the forms a 60-edge symmetric graph. There are 60 one-sided hexominoes, the polyominoes made from six squares, in geometry, it is the number of seconds in a minute, and the number of minutes in a degree. In normal space, the three angles of an equilateral triangle each measure 60 degrees, adding up to 180 degrees. Because it is divisible by the sum of its digits in base 10, a number system with base 60 is called sexagesimal. It is the smallest positive integer that is written only the smallest. The first fullerene to be discovered was buckminsterfullerene C60, an allotrope of carbon with 60 atoms in each molecule and this ball is known as a buckyball, and looks like a soccer ball. The atomic number of neodymium is 60, and cobalt-60 is an isotope of cobalt. The electrical utility frequency in western Japan, South Korea, Taiwan, the Philippines, Saudi Arabia, the United States, and several other countries in the Americas is 60 Hz
2.
Divisor
–
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some other integer to produce n. In this case one says also that n is a multiple of m, an integer n is divisible by another integer m if m is a divisor of n, this implies dividing n by m leaves no remainder. Under this definition, the statement m ∣0 holds for every m, as before, but with the additional constraint k ≠0. Under this definition, the statement m ∣0 does not hold for m ≠0, in the remainder of this article, which definition is applied is indicated where this is significant. Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4, they are 1,2,4, −1, −2, and −4,1 and −1 divide every integer. Every integer is a divisor of itself, every integer is a divisor of 0. Integers divisible by 2 are called even, and numbers not divisible by 2 are called odd,1, −1, n and −n are known as the trivial divisors of n. A divisor of n that is not a divisor is known as a non-trivial divisor. A non-zero integer with at least one divisor is known as a composite number, while the units −1 and 1. There are divisibility rules which allow one to recognize certain divisors of a number from the numbers digits, the generalization can be said to be the concept of divisibility in any integral domain. 7 is a divisor of 42 because 7 ×6 =42 and it can also be said that 42 is divisible by 7,42 is a multiple of 7,7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2,3, the positive divisors of 42 are 1,2,3,6,7,14,21,42. 5 ∣0, because 5 ×0 =0, if a ∣ b and b ∣ a, then a = b or a = − b. If a ∣ b and a ∣ c, then a ∣ holds, however, if a ∣ b and c ∣ b, then ∣ b does not always hold. If a ∣ b c, and gcd =1, then a ∣ c, if p is a prime number and p ∣ a b then p ∣ a or p ∣ b. A positive divisor of n which is different from n is called a proper divisor or a part of n. A number that does not evenly divide n but leaves a remainder is called an aliquant part of n, an integer n >1 whose only proper divisor is 1 is called a prime number
3.
Richard K. Guy
–
Richard Kenneth Guy is a British mathematician, professor emeritus in the Department of Mathematics at the University of Calgary. He is known for his work in theory, geometry, recreational mathematics, combinatorics. He is best known for co-authorship of Winning Ways for your Mathematical Plays and he has also published over 300 papers. For this paper he received the MAA Lester R. Ford Award, Guy was born 30 Sept 1916 in Nuneaton, Warwickshire, England, to Adeline Augusta Tanner and William Alexander Charles Guy. Both of his parents were teachers, rising to the rank of headmistress and headmaster and he attended Warwick School for Boys, the third oldest school in Britain, but was not enthusiastic about most of the curriculum. He was good at sports, however, and excelled in mathematics, at the age of 17 he read Dicksons History of the Theory of Numbers. He said it was better than the works of Shakespeare. By then he had developed a passion for mountain climbing. In 1935 Guy entered Gonville and Caius College, at the University of Cambridge as a result of winning several scholarships, to win the most important of these he had to travel to Cambridge and write exams for two days. His interest in games began while at Cambridge where he became a composer of chess problems. In 1938, he graduated with an honours degree, he himself thinks that his failure to get a first may have been related to his obsession with chess. Although his parents advised against it, Guy decided to become a teacher. He met his future wife Nancy Louise Thirian through her brother Michael who was a fellow scholarship winner at Gonville and he and Louise shared loves of mountains and dancing. He wooed her through correspondence, and they married in December 1940, in November 1942, Guy received an emergency commission in the Meteorological Branch of the Royal Air Force, with the rank of flight lieutenant. He was posted to Reykjavik, and later to Bermuda, as a meteorologist and he tried to get permission for Louise to join him but was refused. While in Iceland, he did some glacier travel, skiing and mountain climbing, marking the beginning of another love affair. When Guy returned to England after the war, he went back to teaching, this time at Stockport Grammar School, in 1947 the family moved to London, where he got a job teaching math at Goldsmiths College. In 1951 he moved to Singapore, where he taught at the University of Malaya for the next decade and he then spent a few years at the Indian Institute of Technology in Delhi, India
4.
Fundamental theorem of arithmetic
–
For example,1200 =24 ×31 ×52 =3 ×2 ×2 ×2 ×2 ×5 ×5 =5 ×2 ×3 ×2 ×5 ×2 ×2 = etc. The requirement that the factors be prime is necessary, factorizations containing composite numbers may not be unique. This theorem is one of the reasons why 1 is not considered a prime number, if 1 were prime. Book VII, propositions 30,31 and 32, and Book IX, proposition 14 of Euclids Elements are essentially the statement, proposition 30 is referred to as Euclids lemma. And it is the key in the proof of the theorem of arithmetic. Proposition 31 is proved directly by infinite descent, proposition 32 is derived from proposition 31, and prove that the decomposition is possible. Book IX, proposition 14 is derived from Book VII, proposition 30, indeed, in this proposition the exponents are all equal to one, so nothing is said for the general case. Article 16 of Gauss Disquisitiones Arithmeticae is a modern statement. < pk are primes and the αi are positive integers and this representation is commonly extended to all positive integers, including one, by the convention that the empty product is equal to 1. This representation is called the representation of n, or the standard form of n. For example 999 = 33×37,1000 = 23×53,1001 = 7×11×13 Note that factors p0 =1 may be inserted without changing the value of n, allowing negative exponents provides a canonical form for positive rational numbers. However, as Integer factorization of large integers is much harder than computing their product, gcd or lcm, these formulas have, in practice, many arithmetical functions are defined using the canonical representation. In particular, the values of additive and multiplicative functions are determined by their values on the powers of prime numbers, the proof uses Euclids lemma, if a prime p divides the product of two natural numbers a and b, then p divides a or p divides b. We need to show that every integer greater than 1 is either prime or a product of primes, for the base case, note that 2 is prime. By induction, assume true for all numbers between 1 and n, if n is prime, there is nothing more to prove. Otherwise, there are integers a and b, where n = ab and 1 < a ≤ b < n, by the induction hypothesis, a = p1p2. pj and b = q1q2. qk are products of primes. But then n = ab = p1p2. pjq1q2. qk is a product of primes, assume that s >1 is the product of prime numbers in two different ways, s = p 1 p 2 ⋯ p m = q 1 q 2 ⋯ q n. We must show m = n and that the qj are a rearrangement of the pi, by Euclids lemma, p1 must divide one of the qj, relabeling the qj if necessary, say that p1 divides q1
5.
Prime number
–
A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a number is called a composite number. For example,5 is prime because 1 and 5 are its only positive integer factors, the property of being prime is called primality. A simple but slow method of verifying the primality of a number n is known as trial division. It consists of testing whether n is a multiple of any integer between 2 and n, algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of forms, such as Mersenne numbers. As of January 2016, the largest known prime number has 22,338,618 decimal digits, there are infinitely many primes, as demonstrated by Euclid around 300 BC. There is no simple formula that separates prime numbers from composite numbers. However, the distribution of primes, that is to say, many questions regarding prime numbers remain open, such as Goldbachs conjecture, and the twin prime conjecture. Such questions spurred the development of branches of number theory. Prime numbers give rise to various generalizations in other domains, mainly algebra, such as prime elements. A natural number is called a number if it has exactly two positive divisors,1 and the number itself. Natural numbers greater than 1 that are not prime are called composite, among the numbers 1 to 6, the numbers 2,3, and 5 are the prime numbers, while 1,4, and 6 are not prime. 1 is excluded as a number, for reasons explained below. 2 is a number, since the only natural numbers dividing it are 1 and 2. Next,3 is prime, too,1 and 3 do divide 3 without remainder, however,4 is composite, since 2 is another number dividing 4 without remainder,4 =2 ·2. 5 is again prime, none of the numbers 2,3, next,6 is divisible by 2 or 3, since 6 =2 ·3. The image at the right illustrates that 12 is not prime,12 =3 ·4, no even number greater than 2 is prime because by definition, any such number n has at least three distinct divisors, namely 1,2, and n