1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

2.
Normal distribution
–
In probability theory, the normal distribution is a very common continuous probability distribution. Normal distributions are important in statistics and are used in the natural and social sciences to represent real-valued random variables whose distributions are not known. The normal distribution is useful because of the limit theorem. Physical quantities that are expected to be the sum of independent processes often have distributions that are nearly normal. Moreover, many results and methods can be derived analytically in explicit form when the relevant variables are normally distributed, the normal distribution is sometimes informally called the bell curve. However, many other distributions are bell-shaped, the probability density of the normal distribution is, f =12 π σ2 e −22 σ2 Where, μ is mean or expectation of the distribution. σ is standard deviation σ2 is variance A random variable with a Gaussian distribution is said to be distributed and is called a normal deviate. The simplest case of a distribution is known as the standard normal distribution. The factor 1 /2 in the exponent ensures that the distribution has unit variance and this function is symmetric around x =0, where it attains its maximum value 1 /2 π and has inflection points at x = +1 and x = −1. Authors may differ also on which normal distribution should be called the standard one, the probability density must be scaled by 1 / σ so that the integral is still 1. If Z is a normal deviate, then X = Zσ + μ will have a normal distribution with expected value μ. Conversely, if X is a normal deviate, then Z = /σ will have a standard normal distribution. Every normal distribution is the exponential of a function, f = e a x 2 + b x + c where a is negative. In this form, the mean value μ is −b/, for the standard normal distribution, a is −1/2, b is zero, and c is − ln /2. The standard Gaussian distribution is denoted with the Greek letter ϕ. The alternative form of the Greek phi letter, φ, is used quite often. The normal distribution is often denoted by N. Thus when a random variable X is distributed normally with mean μ and variance σ2, some authors advocate using the precision τ as the parameter defining the width of the distribution, instead of the deviation σ or the variance σ2

3.
Central limit theorem
–
If this procedure is performed many times, the central limit theorem says that the computed values of the average will be distributed according to the normal distribution. The central limit theorem has a number of variants, in its common form, the random variables must be identically distributed. In variants, convergence of the mean to the normal distribution also occurs for non-identical distributions or for non-independent observations, in more general usage, a central limit theorem is any of a set of weak-convergence theorems in probability theory. When the variance of the i. i. d, Variables is finite, the attractor distribution is the normal distribution. In contrast, the sum of a number of i. i. d, Random variables with power law tail distributions decreasing as | x |−α −1 where 0 < α <2 will tend to an alpha-stable distribution with stability parameter of α as the number of variables grows. Suppose we are interested in the sample average S n, = X1 + ⋯ + X n n of these random variables, by the law of large numbers, the sample averages converge in probability and almost surely to the expected value µ as n → ∞. The classical central limit theorem describes the size and the form of the stochastic fluctuations around the deterministic number µ during this convergence. For large enough n, the distribution of Sn is close to the distribution with mean µ. The usefulness of the theorem is that the distribution of √n approaches normality regardless of the shape of the distribution of the individual Xi, formally, the theorem can be stated as follows, Lindeberg–Lévy CLT. Suppose is a sequence of i. i. d, Random variables with E = µ and Var = σ2 < ∞. Then as n approaches infinity, the random variables √n converge in distribution to a normal N, n → d N. Note that the convergence is uniform in z in the sense that lim n → ∞ sup z ∈ R | Pr − Φ | =0, the theorem is named after Russian mathematician Aleksandr Lyapunov. In this variant of the limit theorem the random variables Xi have to be independent. The theorem also requires that random variables | Xi | have moments of order. Suppose is a sequence of independent random variables, each with finite expected value μi, in practice it is usually easiest to check Lyapunov’s condition for δ =1. If a sequence of random variables satisfies Lyapunov’s condition, then it also satisfies Lindeberg’s condition, the converse implication, however, does not hold. In the same setting and with the notation as above. Suppose that for every ε >0 lim n → ∞1 s n 2 ∑ i =1 n E =0 where 1 is the indicator function

4.
Complex number
–
A complex number is a number that can be expressed in the form a + bi, where a and b are real numbers and i is the imaginary unit, satisfying the equation i2 = −1. In this expression, a is the part and b is the imaginary part of the complex number. If z = a + b i, then ℜ z = a, ℑ z = b, Complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part. The complex number a + bi can be identified with the point in the complex plane, a complex number whose real part is zero is said to be purely imaginary, whereas a complex number whose imaginary part is zero is a real number. In this way, the numbers are a field extension of the ordinary real numbers. As well as their use within mathematics, complex numbers have applications in many fields, including physics, chemistry, biology, economics, electrical engineering. The Italian mathematician Gerolamo Cardano is the first known to have introduced complex numbers and he called them fictitious during his attempts to find solutions to cubic equations in the 16th century. Complex numbers allow solutions to equations that have no solutions in real numbers. For example, the equation 2 = −9 has no real solution, Complex numbers provide a solution to this problem. The idea is to extend the real numbers with the unit i where i2 = −1. According to the theorem of algebra, all polynomial equations with real or complex coefficients in a single variable have a solution in complex numbers. A complex number is a number of the form a + bi, for example, −3.5 + 2i is a complex number. The real number a is called the part of the complex number a + bi. By this convention the imaginary part does not include the unit, hence b. The real part of a number z is denoted by Re or ℜ. For example, Re = −3.5 Im =2, hence, in terms of its real and imaginary parts, a complex number z is equal to Re + Im ⋅ i. This expression is known as the Cartesian form of z. A real number a can be regarded as a number a + 0i whose imaginary part is 0

5.
Probability theory
–
Probability theory is the branch of mathematics concerned with probability, the analysis of random phenomena. It is not possible to predict precisely results of random events, two representative mathematical results describing such patterns are the law of large numbers and the central limit theorem. As a mathematical foundation for statistics, probability theory is essential to human activities that involve quantitative analysis of large sets of data. Methods of probability theory also apply to descriptions of complex systems given only partial knowledge of their state, a great discovery of twentieth century physics was the probabilistic nature of physical phenomena at atomic scales, described in quantum mechanics. Christiaan Huygens published a book on the subject in 1657 and in the 19th century, initially, probability theory mainly considered discrete events, and its methods were mainly combinatorial. Eventually, analytical considerations compelled the incorporation of continuous variables into the theory and this culminated in modern probability theory, on foundations laid by Andrey Nikolaevich Kolmogorov. Kolmogorov combined the notion of space, introduced by Richard von Mises. This became the mostly undisputed axiomatic basis for modern probability theory, most introductions to probability theory treat discrete probability distributions and continuous probability distributions separately. The more mathematically advanced measure theory-based treatment of probability covers the discrete, continuous, consider an experiment that can produce a number of outcomes. The set of all outcomes is called the space of the experiment. The power set of the space is formed by considering all different collections of possible results. For example, rolling an honest die produces one of six possible results, one collection of possible results corresponds to getting an odd number. Thus, the subset is an element of the set of the sample space of die rolls. In this case, is the event that the die falls on some odd number, If the results that actually occur fall in a given event, that event is said to have occurred. Probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results be assigned a value of one, the probability that any one of the events, or will occur is 5/6. This is the same as saying that the probability of event is 5/6 and this event encompasses the possibility of any number except five being rolled. The mutually exclusive event has a probability of 1/6, and the event has a probability of 1, discrete probability theory deals with events that occur in countable sample spaces. Modern definition, The modern definition starts with a finite or countable set called the sample space, which relates to the set of all possible outcomes in classical sense, denoted by Ω

6.
Banach space
–
In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn, Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces, the vector space structure allows one to relate the behavior of Cauchy sequences to that of converging series of vectors. All norms on a vector space are equivalent. Every finite-dimensional normed space over R or C is a Banach space, if X and Y are normed spaces over the same ground field K, the set of all continuous K-linear maps T, X → Y is denoted by B. In infinite-dimensional spaces, not all maps are continuous. For Y a Banach space, the space B is a Banach space with respect to this norm, if X is a Banach space, the space B = B forms a unital Banach algebra, the multiplication operation is given by the composition of linear maps. If X and Y are normed spaces, they are isomorphic normed spaces if there exists a linear bijection T, X → Y such that T, if one of the two spaces X or Y is complete then so is the other space. Two normed spaces X and Y are isometrically isomorphic if in addition, T is an isometry, the Banach–Mazur distance d between two isomorphic but not isometric spaces X and Y gives a measure of how much the two spaces X and Y differ. Every normed space X can be embedded in a Banach space. More precisely, there is a Banach space Y and an isometric mapping T, X → Y such that T is dense in Y. If Z is another Banach space such that there is an isomorphism from X onto a dense subset of Z. This Banach space Y is the completion of the normed space X, the underlying metric space for Y is the same as the metric completion of X, with the vector space operations extended from X to Y. The completion of X is often denoted by X ^, the cartesian product X × Y of two normed spaces is not canonically equipped with a norm. However, several equivalent norms are used, such as ∥ ∥1 = ∥ x ∥ + ∥ y ∥, ∥ ∥ ∞ = max. In this sense, the product X × Y is complete if and only if the two factors are complete. If M is a linear subspace of a normed space X, there is a natural norm on the quotient space X / M

7.
Gerald Folland
–
Gerald Budge Folland is an American mathematician and a professor of mathematics at the University of Washington. His areas of interest are harmonic analysis, differential equations, the title of his doctoral dissertation at Princeton University is The Tangential Cauchy-Riemann Complex on Spheres. He is the author of textbooks in mathematical analysis. In 2012 he became a fellow of the American Mathematical Society, a Guide to Advanced Real Analysis, Washington, D. C. Quantum Field Theory, A Tourist Guide for Mathematicians, Providence, Real Analysis, Modern Techniques and their Applications, John Wiley,1999, ISBN 978-0-471-31716-6. The uncertainty principle, a survey, J. Fourier Anal. Introduction to Partial Differential Equations, Princeton University Press,1995, a Course in Abstract Harmonic Analysis, CRC Press,1995. Fourier Analysis and Its Applications, Pacific Grove, Calif, wadsworth & Brooks/Cole Advanced Books & Software,1992. Harmonic Analysis in Phase Space, Princeton University Press,1989, lectures on Partial Differential Equations, lectures delivered at the Indian Institute of Science, Bangalore, Springer,1983. Hardy Spaces on Homogeneous Groups, Princeton University Press,1982, estimates for the ∂b complex and analysis on the Heisenberg group, Comm. Jerry Follands Personal Homepage Jerry Follands Official Homepage Gerald Folland at the Mathematics Genealogy Project

8.
Continuous function
–
In mathematics, a continuous function is a function for which sufficiently small changes in the input result in arbitrarily small changes in the output. Otherwise, a function is said to be a discontinuous function, a continuous function with a continuous inverse function is called a homeomorphism. Continuity of functions is one of the concepts of topology. The introductory portion of this focuses on the special case where the inputs and outputs of functions are real numbers. In addition, this article discusses the definition for the general case of functions between two metric spaces. In order theory, especially in theory, one considers a notion of continuity known as Scott continuity. Other forms of continuity do exist but they are not discussed in this article, as an example, consider the function h, which describes the height of a growing flower at time t. By contrast, if M denotes the amount of money in an account at time t, then the function jumps at each point in time when money is deposited or withdrawn. A form of the definition of continuity was first given by Bernard Bolzano in 1817. Cauchy defined infinitely small quantities in terms of quantities. The formal definition and the distinction between pointwise continuity and uniform continuity were first given by Bolzano in the 1830s but the work wasnt published until the 1930s, all three of those nonequivalent definitions of pointwise continuity are still in use. Eduard Heine provided the first published definition of continuity in 1872. This is not a definition of continuity since the function f =1 x is continuous on its whole domain of R ∖ A function is continuous at a point if it does not have a hole or jump. A “hole” or “jump” in the graph of a function if the value of the function at a point c differs from its limiting value along points that are nearby. Such a point is called a discontinuity, a function is then continuous if it has no holes or jumps, that is, if it is continuous at every point of its domain. Otherwise, a function is discontinuous, at the points where the value of the function differs from its limiting value, there are several ways to make this definition mathematically rigorous. These definitions are equivalent to one another, so the most convenient definition can be used to determine whether a function is continuous or not. In the definitions below, f, I → R. is a function defined on a subset I of the set R of real numbers and this subset I is referred to as the domain of f

9.
Measure (mathematics)
–
In mathematical analysis, a measure on a set is a systematic way to assign a number to each suitable subset of that set, intuitively interpreted as its size. In this sense, a measure is a generalization of the concepts of length, area, for instance, the Lebesgue measure of the interval in the real numbers is its length in the everyday sense of the word – specifically,1. Technically, a measure is a function that assigns a real number or +∞ to subsets of a set X. It must further be countably additive, the measure of a subset that can be decomposed into a finite number of smaller disjoint subsets, is the sum of the measures of the smaller subsets. In general, if one wants to associate a consistent size to each subset of a set while satisfying the other axioms of a measure. This problem was resolved by defining measure only on a sub-collection of all subsets, the so-called measurable subsets and this means that countable unions, countable intersections and complements of measurable subsets are measurable. Non-measurable sets in a Euclidean space, on which the Lebesgue measure cannot be defined consistently, are complicated in the sense of being badly mixed up with their complement. Indeed, their existence is a consequence of the axiom of choice. Measure theory was developed in stages during the late 19th and early 20th centuries by Émile Borel, Henri Lebesgue, Johann Radon. The main applications of measures are in the foundations of the Lebesgue integral, in Andrey Kolmogorovs axiomatisation of probability theory, probability theory considers measures that assign to the whole set the size 1, and considers measurable subsets to be events whose probability is given by the measure. Ergodic theory considers measures that are invariant under, or arise naturally from, let X be a set and Σ a σ-algebra over X. A function μ from Σ to the real number line is called a measure if it satisfies the following properties, Non-negativity. Countable additivity, For all countable collections i =1 ∞ of pairwise disjoint sets in Σ, μ = ∑ k =1 ∞ μ One may require that at least one set E has finite measure. Then the empty set automatically has measure zero because of countable additivity, because μ = μ = μ + μ + μ + …, which implies that μ =0. If only the second and third conditions of the definition of measure above are met, the pair is called a measurable space, the members of Σ are called measurable sets. If and are two spaces, then a function f, X → Y is called measurable if for every Y-measurable set B ∈ Σ Y. See also Measurable function#Caveat about another setup, a triple is called a measure space. A probability measure is a measure with total measure one – i. e, a probability space is a measure space with a probability measure

10.
Probability measure
–
In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as countable additivity. The difference between a probability measure and the general notion of measure is that a probability measure must assign value 1 to the entire probability space. Probability measures have applications in fields, from physics to finance. The requirements for a function μ to be a probability measure on a probability space are that, μ must return results in the unit interval, μ must satisfy the countable additivity property that for all countable collections of pairwise disjoint sets, μ = ∑ i ∈ I μ. For example, given three elements 1,2 and 3 with probabilities 1/4, 1/4 and 1/2, the assigned to is 1/4 + 1/2 = 3/4. The conditional probability based on the intersection of events defined as, if there is a unique probability measure that must be used to price assets in a market, then the market is called a complete market. Not all measures that intuitively represent chance or likelihood are probability measures, for instance, although the fundamental concept of a system in statistical mechanics is a measure space, such measures are not always probability measures. Probability measures are used in mathematical biology. For instance, in comparative sequence analysis a probability measure may be defined for the likelihood that a variant may be permissible for an acid in a sequence. Ash, Catherine A. Doléans-Dade 1999 Academic Press ISBN 0-12-065202-1

11.
PlanetMath
–
PlanetMath is a free, collaborative, online mathematics encyclopedia. The emphasis is on rigour, openness, pedagogy, real-time content, interlinked content, intended to be comprehensive, the project is currently hosted by the University of Waterloo. The site is owned by a US-based nonprofit corporation, PlanetMath. org, the main PlanetMath focus is on encyclopedic entries, and some forum discussions. In addition, the project hosts data about books, expositions, a system for semi-private messaging among users is also in place. Developing software recommendations for improved content authoring and editorial functions, PlanetMath content is licensed under the copyleft Creative Commons Attribution/Share-Alike License. All content is written in LaTeX, a typesetting system popular among mathematicians because of its support of the needs of mathematical typesetting. The software running PlanetMath is written in Perl and runs on Linux and it is known as Noösphere and has been released under the free BSD License. As of March 13,2013 PlanethMath has retired Noösphere and runs now on a software called Planetary, encyclopedic content and bibliographic materials related to physics, mathematics and mathematical physics are developed by PlanetPhysics. The site, launched in 2005, uses similar software, but a significantly different moderation model with emphasis on current research in physics and peer review