1.
Number theory
–
Number theory or, in older usage, arithmetic is a branch of pure mathematics devoted primarily to the study of the integers. It is sometimes called The Queen of Mathematics because of its place in the discipline. Number theorists study prime numbers as well as the properties of objects out of integers or defined as generalizations of the integers. Integers can be considered either in themselves or as solutions to equations, questions in number theory are often best understood through the study of analytical objects that encode properties of the integers, primes or other number-theoretic objects in some fashion. One may also study real numbers in relation to rational numbers, the older term for number theory is arithmetic. By the early century, it had been superseded by number theory. The use of the arithmetic for number theory regained some ground in the second half of the 20th century. In particular, arithmetical is preferred as an adjective to number-theoretic. The first historical find of a nature is a fragment of a table. The triples are too many and too large to have been obtained by brute force, the heading over the first column reads, The takiltum of the diagonal which has been subtracted such that the width. The tables layout suggests that it was constructed by means of what amounts, in language, to the identity 2 +1 =2. If some other method was used, the triples were first constructed and then reordered by c / a, presumably for use as a table. It is not known what these applications may have been, or whether there could have any, Babylonian astronomy, for example. It has been suggested instead that the table was a source of examples for school problems. While Babylonian number theory—or what survives of Babylonian mathematics that can be called thus—consists of this single, striking fragment, late Neoplatonic sources state that Pythagoras learned mathematics from the Babylonians. Much earlier sources state that Thales and Pythagoras traveled and studied in Egypt, Euclid IX 21—34 is very probably Pythagorean, it is very simple material, but it is all that is needed to prove that 2 is irrational. Pythagorean mystics gave great importance to the odd and the even, the discovery that 2 is irrational is credited to the early Pythagoreans. This forced a distinction between numbers, on the one hand, and lengths and proportions, on the other hand, the Pythagorean tradition spoke also of so-called polygonal or figurate numbers
2.
Natural number
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory
3.
On-Line Encyclopedia of Integer Sequences
–
The On-Line Encyclopedia of Integer Sequences, also cited simply as Sloanes, is an online database of integer sequences. It was created and maintained by Neil Sloane while a researcher at AT&T Labs, Sloane continues to be involved in the OEIS in his role as President of the OEIS Foundation. OEIS records information on integer sequences of interest to professional mathematicians and amateurs, and is widely cited. As of 30 December 2016 it contains nearly 280,000 sequences, the database is searchable by keyword and by subsequence. Neil Sloane started collecting integer sequences as a student in 1965 to support his work in combinatorics. The database was at first stored on punched cards and he published selections from the database in book form twice, A Handbook of Integer Sequences, containing 2,372 sequences in lexicographic order and assigned numbers from 1 to 2372. The Encyclopedia of Integer Sequences with Simon Plouffe, containing 5,488 sequences and these books were well received and, especially after the second publication, mathematicians supplied Sloane with a steady flow of new sequences. The collection became unmanageable in book form, and when the database had reached 16,000 entries Sloane decided to go online—first as an e-mail service, as a spin-off from the database work, Sloane founded the Journal of Integer Sequences in 1998. The database continues to grow at a rate of some 10,000 entries a year, Sloane has personally managed his sequences for almost 40 years, but starting in 2002, a board of associate editors and volunteers has helped maintain the database. In 2004, Sloane celebrated the addition of the 100, 000th sequence to the database, A100000, in 2006, the user interface was overhauled and more advanced search capabilities were added. In 2010 an OEIS wiki at OEIS. org was created to simplify the collaboration of the OEIS editors and contributors, besides integer sequences, the OEIS also catalogs sequences of fractions, the digits of transcendental numbers, complex numbers and so on by transforming them into integer sequences. Sequences of rationals are represented by two sequences, the sequence of numerators and the sequence of denominators, important irrational numbers such as π =3.1415926535897. are catalogued under representative integer sequences such as decimal expansions, binary expansions, or continued fraction expansions. The OEIS was limited to plain ASCII text until 2011, yet it still uses a form of conventional mathematical notation. Greek letters are represented by their full names, e. g. mu for μ. Every sequence is identified by the letter A followed by six digits, sometimes referred to without the leading zeros, individual terms of sequences are separated by commas. Digit groups are not separated by commas, periods, or spaces, a represents the nth term of the sequence. Zero is often used to represent non-existent sequence elements, for example, A104157 enumerates the smallest prime of n² consecutive primes to form an n×n magic square of least magic constant, or 0 if no such magic square exists. The value of a is 2, a is 1480028129, but there is no such 2×2 magic square, so a is 0
4.
Prime number
–
A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a number is called a composite number. For example,5 is prime because 1 and 5 are its only positive integer factors, the property of being prime is called primality. A simple but slow method of verifying the primality of a number n is known as trial division. It consists of testing whether n is a multiple of any integer between 2 and n, algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of forms, such as Mersenne numbers. As of January 2016, the largest known prime number has 22,338,618 decimal digits, there are infinitely many primes, as demonstrated by Euclid around 300 BC. There is no simple formula that separates prime numbers from composite numbers. However, the distribution of primes, that is to say, many questions regarding prime numbers remain open, such as Goldbachs conjecture, and the twin prime conjecture. Such questions spurred the development of branches of number theory. Prime numbers give rise to various generalizations in other domains, mainly algebra, such as prime elements. A natural number is called a number if it has exactly two positive divisors,1 and the number itself. Natural numbers greater than 1 that are not prime are called composite, among the numbers 1 to 6, the numbers 2,3, and 5 are the prime numbers, while 1,4, and 6 are not prime. 1 is excluded as a number, for reasons explained below. 2 is a number, since the only natural numbers dividing it are 1 and 2. Next,3 is prime, too,1 and 3 do divide 3 without remainder, however,4 is composite, since 2 is another number dividing 4 without remainder,4 =2 ·2. 5 is again prime, none of the numbers 2,3, next,6 is divisible by 2 or 3, since 6 =2 ·3. The image at the right illustrates that 12 is not prime,12 =3 ·4, no even number greater than 2 is prime because by definition, any such number n has at least three distinct divisors, namely 1,2, and n
5.
Almost all
–
In mathematics, the phrase almost all has a number of specialised uses which extend its intuitive meaning. Almost all is used synonymously with all but finitely many or all but a countable set. A simple example is that almost all numbers are odd. Perversely, if we allow almost all to all but a countable set, then it follows that almost all prime numbers are even. When speaking about the reals, sometimes it means all reals, in this sense almost all reals are not a member of the Cantor set even though the Cantor set is uncountable. More generally, almost all is used in the sense of almost everywhere in measure theory. Thus, almost all positive integers are composite, however there are still a number of primes. Generic property Sufficiently large Weisstein, Eric W
6.
Composite number
–
A composite number is a positive integer that can be formed by multiplying together two smaller positive integers. Equivalently, it is an integer that has at least one divisor other than 1. Every positive integer is composite, prime, or the unit 1, so the numbers are exactly the numbers that are not prime. For example, the integer 14 is a number because it is the product of the two smaller integers 2 ×7. Likewise, the integers 2 and 3 are not composite numbers because each of them can only be divided by one, every composite number can be written as the product of two or more primes. For example, the composite number 299 can be written as 13 ×23, and the composite number 360 can be written as 23 ×32 ×5, furthermore and this fact is called the fundamental theorem of arithmetic. There are several known primality tests that can determine whether a number is prime or composite, one way to classify composite numbers is by counting the number of prime factors. A composite number with two prime factors is a semiprime or 2-almost prime, a composite number with three distinct prime factors is a sphenic number. In some applications, it is necessary to differentiate between composite numbers with an odd number of prime factors and those with an even number of distinct prime factors. For the latter μ =2 x =1, while for the former μ =2 x +1 = −1, however, for prime numbers, the function also returns −1 and μ =1. For a number n with one or more repeated prime factors, if all the prime factors of a number are repeated it is called a powerful number. If none of its factors are repeated, it is called squarefree. For example,72 =23 ×32, all the factors are repeated. 42 =2 ×3 ×7, none of the factors are repeated. Another way to classify composite numbers is by counting the number of divisors, all composite numbers have at least three divisors. In the case of squares of primes, those divisors are, a number n that has more divisors than any x < n is a highly composite number. Composite numbers have also been called rectangular numbers, but that name can refer to the pronic numbers, numbers that are the product of two consecutive integers. Table of prime factors Integer factorization Canonical representation of a positive integer Sieve of Eratosthenes Fraleigh, a First Course In Abstract Algebra, Reading, Addison-Wesley, ISBN 0-201-01984-1 Herstein, I. N
7.
Distributed computing
–
Distributed computing is a field of computer science that studies distributed systems. A distributed system is a model in which components located on networked computers communicate and coordinate their actions by passing messages, the components interact with each other in order to achieve a common goal. Three significant characteristics of distributed systems are, concurrency of components, lack of a global clock, examples of distributed systems vary from SOA-based systems to massively multiplayer online games to peer-to-peer applications. A computer program that runs in a system is called a distributed program. There are many alternatives for the message passing mechanism, including pure HTTP, RPC-like connectors, Distributed computing also refers to the use of distributed systems to solve computational problems. In distributed computing, a problem is divided into many tasks, each of which is solved by one or more computers, which communicate with each other by message passing. The terms are used in a much wider sense, even referring to autonomous processes that run on the same physical computer. The entities communicate with each other by message passing, a distributed system may have a common goal, such as solving a large computational problem, the user then perceives the collection of autonomous processors as a unit. Other typical properties of distributed systems include the following, The system has to tolerate failures in individual computers. The structure of the system is not known in advance, the system may consist of different kinds of computers and network links, each computer has only a limited, incomplete view of the system. Each computer may know one part of the input. Distributed systems are groups of networked computers, which have the goal for their work. The terms concurrent computing, parallel computing, and distributed computing have a lot of overlap, the same system may be characterized both as parallel and distributed, the processors in a typical distributed system run concurrently in parallel. Parallel computing may be seen as a tightly coupled form of distributed computing. In distributed computing, each processor has its own private memory, Information is exchanged by passing messages between the processors. The figure on the right illustrates the difference between distributed and parallel systems, figure shows a parallel system in which each processor has a direct access to a shared memory. The situation is complicated by the traditional uses of the terms parallel and distributed algorithm that do not quite match the above definitions of parallel. The use of concurrent processes that communicate by message-passing has its roots in operating system architectures studied in the 1960s, the first widespread distributed systems were local-area networks such as Ethernet, which was invented in the 1970s
8.
PrimeGrid
–
PrimeGrid is a distributed computing project for searching for prime numbers of world-record size. It makes use of the Berkeley Open Infrastructure for Network Computing platform, PrimeGrid started in June 2005 under the name Message@home and tried to decipher text fragments hashed with MD5. Message@home was a test to port the BOINC scheduler to Perl to obtain greater portability, after a while the project attempted the RSA factoring challenge trying to factor RSA-640. After RSA-640 was factored by a team in November 2005. With the chance to succeed too small, it discarded the RSA challenges, was renamed to PrimeGrid, at 210,000,000,000 the primegen subproject was stopped. In June 2006, dialog started with Riesel Sieve to bring their project to the BOINC community, PrimeGrid provided PerlBOINC support and Riesel Sieve was successful in implementing their sieve as well as a prime finding application. With collaboration from Riesel Sieve, PrimeGrid was able to implement the LLR application in partnership with another prime finding project, in November 2006, the TPS LLR application was officially released at PrimeGrid. Less than two months later, January 2007, the twin was found by the original manual project. PrimeGrid and TPS then advanced their search for even larger twin primes, the summer of 2007 was very active as the Cullen and Woodall prime searches were launched. In the Fall, more prime searches were added through partnerships with the Prime Sierpinski Problem, additionally, two sieves were added, the Prime Sierpinski Problem combined sieve which includes supporting the Seventeen or Bust sieve, and the combined Cullen/Woodall sieve. In the Fall of 2007, PrimeGrid migrated its systems from PerlBOINC to standard BOINC software, since September 2008, PrimeGrid is also running a Proth prime sieving subproject. In January 2010 the subproject Seventeen or Bust was added, the calculations for the Riesel problem followed in March 2010. In addition, PrimeGrid is helping test for a record Sophie Germain prime. As of March 2016, PrimeGrid is working on or has worked on the projects,321 Prime Search is a continuation of Paul Underwoods 321 Search which looked for primes of the form 3 · 2n −1. PrimeGrid added the +1 form and continues the search up to n = 25M, the search was successful in April 2010 with the finding of the first known AP26,43142746595714191 +23681770 · 23# · n is prime for n =0. 23# = 2·3·5·7·11·13·17·19·23 =223092870, or 23 primorial, is the product of all primes up to 23, PrimeGrid is also running a search for Cullen prime numbers, yielding the two largest known Cullen primes. The first one being the 14th largest known prime at the time of discovery, as of 9 March 2014 PrimeGrid has eliminated 14 values of k from the Riesel problem and is continuing the search to eliminate the 50 remaining numbers. Primegrid then worked with the Twin Prime Search to search for a twin prime at approximately 58700 digits
9.
Mersenne prime
–
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a number that can be written in the form Mn = 2n −1 for some integer n. They are named after Marin Mersenne, a French Minim friar, the first four Mersenne primes are 3,7,31, and 127. If n is a number then so is 2n −1. The definition is therefore unchanged when written Mp = 2p −1 where p is assumed prime, more generally, numbers of the form Mn = 2n −1 without the primality requirement are called Mersenne numbers. The smallest composite pernicious Mersenne number is 211 −1 =2047 =23 ×89, Mersenne primes Mp are also noteworthy due to their connection to perfect numbers. As of January 2016,49 Mersenne primes are known, the largest known prime number 274,207,281 −1 is a Mersenne prime. Since 1997, all newly found Mersenne primes have been discovered by the “Great Internet Mersenne Prime Search”, many fundamental questions about Mersenne primes remain unresolved. It is not even whether the set of Mersenne primes is finite or infinite. The Lenstra–Pomerance–Wagstaff conjecture asserts that there are infinitely many Mersenne primes,23 | M11,47 | M23,167 | M83,263 | M131,359 | M179,383 | M191,479 | M239, and 503 | M251. Since for these primes p, 2p +1 is congruent to 7 mod 8, so 2 is a quadratic residue mod 2p +1, since p is a prime, it must be p or 1. The first four Mersenne primes are M2 =3, M3 =7, M5 =31, a basic theorem about Mersenne numbers states that if Mp is prime, then the exponent p must also be prime. This follows from the identity 2 a b −1 = ⋅ = ⋅ and this rules out primality for Mersenne numbers with composite exponent, such as M4 =24 −1 =15 =3 ×5 = ×. Though the above examples might suggest that Mp is prime for all p, this is not the case. The evidence at hand does suggest that a randomly selected Mersenne number is more likely to be prime than an arbitrary randomly selected odd integer of similar size. Nonetheless, prime Mp appear to grow increasingly sparse as p increases, in fact, of the 2,270,720 prime numbers p up to 37,156,667, Mp is prime for only 45 of them. The lack of any simple test to determine whether a given Mersenne number is prime makes the search for Mersenne primes a difficult task, the Lucas–Lehmer primality test is an efficient primality test that greatly aids this task. The search for the largest known prime has somewhat of a cult following, consequently, a lot of computer power has been expended searching for new Mersenne primes, much of which is now done using distributed computing
10.
Alfred van der Poorten
–
Alfred Jacobus van der Poorten was a Dutch-Australian number theorist, for many years on the mathematics faculties of the University of New South Wales and Macquarie University. Van der Poorten was born into a Jewish family in Amsterdam in 1942, the family moved to Sydney in 1951, travelling there aboard the SS Himalaya. Van der Poorten studied at Sydney Boys High School from 1955–59, while a student at UNSW, he led the student union council and was president of the University Union, as well as helping to lead several Jewish and Zionist student organisations. He also helped to manage the universitys cooperative bookstore, where he met and in 1972 married another bookstore manager, on finishing his studies in 1969, van der Poorten joined the UNSW faculty as a lecturer in pure mathematics. He became senior lecturer in 1972 and associate professor in 1976, from 1991 onwards he also directed the Centre for Number Theory Research at Macquarie. In 1973, van der Poorten founded the Australian Mathematical Society Gazette and he was elected president of the Australian Mathematical Society in 1996. Van der Poorten was also active in science fiction fandom, beginning in the mid-1960s. He was an member of the Sydney Science Fiction Foundation, attended the first SynCon in 1970. His fannish activities significantly lessened by the late 1970s, but as late as 1999 he was a member of the 57th World Science Fiction Convention in Sydney where he helped operate the Locus table. He had many co-authors, the most frequent being his colleague John H. Loxton, who joined the UNSW faculty in 1972 and who later like van der Poorten moved to Macquarie. As well as publishing his own research, van der Poorten was noted for his writings, among them a paper on Apérys theorem on the irrationality of ζ. Van der Poorten received the Australian Youth Citizenship Award in 1966 for his student leadership activities and he became a member of the Order of Australia in 2004. With Ian Sloan, van der Poorten was awarded one of two of the inaugural George Szekeres Medals of the Australian Mathematical Society in 2002, and he became a member of the society in 2009. Van der Poorten, Alfred, A proof that Euler missed. Apérys proof of the irrationality of ζ, The Mathematical Intelligencer,1, 195–203, doi,10. 1007/BF03028234, dwork, Bernard M. van der Poorten, Alfred J. The Eisenstein constant, Duke Mathematical Journal,65, 23–43, doi,10. 1215/S0012-7094-92-06502-1, van der Poorten, Alf, Notes on Fermats Last Theorem, Canadian Mathematical Society Series of Monographs and Advanced Texts, New York, John Wiley & Sons Inc. Van der Poorten, Alfred, Williams, Kenneth S. Values of the Dedekind eta function at quadratic irrationalities, Canadian Journal of Mathematics,51, 176–224, doi,10. 4153/CJM-1999-011-1, MR1692895
11.
Providence, Rhode Island
–
Providence is the capital of and most populous city in the U. S. state of Rhode Island, founded in 1636, and one of the oldest cities in the United States. It is located in Providence County and is the third most populous city in New England, after Boston, Providence has a city population of 179,154, it is also part of the Providence metropolitan area which extends into southern Massachusetts. The Providence metropolitan area has an population of 1,604,291. This can be considered, in turn, to be part of the Greater Boston commuting area, Providence was founded by Roger Williams, a religious exile from the Massachusetts Bay Colony. He named the area in honor of Gods merciful Providence, which he believed was responsible for revealing such a haven for him, the city is situated at the mouth of the Providence River at the head of Narragansett Bay. Providence was one of the first cities in the country to industrialize and became noted for its tool, jewelry. The city was nicknamed the Beehive of Industry, it began rebranding itself as the Creative Capital in 2009 to emphasize its educational resources. The area that is now Providence was first settled in June 1636 by Roger Williams and was one of the original Thirteen Colonies of the United States, Williams and his company felt compelled to withdraw from Massachusetts Bay Colony. Providence quickly became a refuge for persecuted religious dissenters, as Williams himself had been exiled from Massachusetts, Providence residents were among the first Patriots to spill blood in the leadup to the American Revolution during the Gaspée Affair of 1772. Rhode Island was the first of the thirteen colonies to renounce its allegiance to the British Crown on May 4,1776. It was also the last of the thirteen colonies to ratify the United States Constitution on May 29,1790, following the war, Providence was the countrys ninth-largest city with 7,614 people. The economy shifted from maritime endeavors to manufacturing, in particular machinery, tools, silverware, jewelry, by the start of the 20th century, Providence boasted some of the largest manufacturing plants in the country, including Brown & Sharpe, Nicholson File, and Gorham Silverware. Providence residents ratified a city charter in 1831 as the population passed 17,000. From its incorporation as a city in 1832 until 1878, the seat of city government was located in the Market House, located in Market Square, the city offices quickly outgrew this building, and the City Council resolved to create a permanent municipal building in 1845. The city offices moved into the City Hall in 1878, during the Civil War, local politics split over slavery as many had ties to Southern cotton. Despite ambivalence concerning the war, the number of military volunteers routinely exceeded quota, by the early 1900s, Providence was one of the wealthiest cities in the United States. Immigrant labor powered one of the nations largest industrial manufacturing centers, Providence was a major manufacturer of industrial products from steam engines to precision tools to silverware, screws, and textiles. From 1975 until 1982, $606 million of local and national Community Development funds were invested throughout the city.4 million ft² Providence Place Mall, despite new investment, poverty remains an entrenched problem as it does in most post-industrial New England cities
12.
American Mathematical Society
–
The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. It was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, john Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, the result was the Bulletin of the New York Mathematical Society, with Fiske as editor-in-chief. The de facto journal, as intended, was influential in increasing membership, the popularity of the Bulletin soon led to Transactions of the American Mathematical Society and Proceedings of the American Mathematical Society, which were also de facto journals. In 1891 Charlotte Scott became the first woman to join the society, the society reorganized under its present name and became a national society in 1894, and that year Scott served as the first woman on the first Council of the American Mathematical Society. In 1951, the headquarters moved from New York City to Providence. The society later added an office in Ann Arbor, Michigan in 1984, in 1954 the society called for the creation of a new teaching degree, a Doctor of Arts in Mathematics, similar to a PhD but without a research thesis. Mary W. Gray challenged that situation by sitting in on the Council meeting in Atlantic City, when she was told she had to leave, she refused saying she would wait until the police came. After that time, Council meetings were open to observers and the process of democratization of the Society had begun, julia Robinson was the first female president of the American Mathematical Society but was unable to complete her term as she was suffering from leukemia. In 1988 the Journal of the American Mathematical Society was created, the 2013 Joint Mathematics Meeting in San Diego drew over 6,600 attendees. Each of the four sections of the AMS hold meetings in the spring. The society also co-sponsors meetings with other mathematical societies. The AMS selects a class of Fellows who have made outstanding contributions to the advancement of mathematics. The AMS publishes Mathematical Reviews, a database of reviews of mathematical publications, various journals, in 1997 the AMS acquired the Chelsea Publishing Company, which it continues to use as an imprint. Blogs, Blog on Blogs e-Mentoring Network in the Mathematical Sciences AMS Graduate Student Blog PhD + Epsilon On the Market Some prizes are awarded jointly with other mathematical organizations. The AMS is led by the President, who is elected for a two-year term, morrey, Jr. Oscar Zariski Nathan Jacobson Saunders Mac Lane Lipman Bers R. H. Andrews Eric M. Friedlander David Vogan Robert L
13.
International Standard Book Number
–
The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, however, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay. The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces. Separating the parts of a 10-digit ISBN is also done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker
14.
Richard K. Guy
–
Richard Kenneth Guy is a British mathematician, professor emeritus in the Department of Mathematics at the University of Calgary. He is known for his work in theory, geometry, recreational mathematics, combinatorics. He is best known for co-authorship of Winning Ways for your Mathematical Plays and he has also published over 300 papers. For this paper he received the MAA Lester R. Ford Award, Guy was born 30 Sept 1916 in Nuneaton, Warwickshire, England, to Adeline Augusta Tanner and William Alexander Charles Guy. Both of his parents were teachers, rising to the rank of headmistress and headmaster and he attended Warwick School for Boys, the third oldest school in Britain, but was not enthusiastic about most of the curriculum. He was good at sports, however, and excelled in mathematics, at the age of 17 he read Dicksons History of the Theory of Numbers. He said it was better than the works of Shakespeare. By then he had developed a passion for mountain climbing. In 1935 Guy entered Gonville and Caius College, at the University of Cambridge as a result of winning several scholarships, to win the most important of these he had to travel to Cambridge and write exams for two days. His interest in games began while at Cambridge where he became a composer of chess problems. In 1938, he graduated with an honours degree, he himself thinks that his failure to get a first may have been related to his obsession with chess. Although his parents advised against it, Guy decided to become a teacher. He met his future wife Nancy Louise Thirian through her brother Michael who was a fellow scholarship winner at Gonville and he and Louise shared loves of mountains and dancing. He wooed her through correspondence, and they married in December 1940, in November 1942, Guy received an emergency commission in the Meteorological Branch of the Royal Air Force, with the rank of flight lieutenant. He was posted to Reykjavik, and later to Bermuda, as a meteorologist and he tried to get permission for Louise to join him but was refused. While in Iceland, he did some glacier travel, skiing and mountain climbing, marking the beginning of another love affair. When Guy returned to England after the war, he went back to teaching, this time at Stockport Grammar School, in 1947 the family moved to London, where he got a job teaching math at Goldsmiths College. In 1951 he moved to Singapore, where he taught at the University of Malaya for the next decade and he then spent a few years at the Indian Institute of Technology in Delhi, India
15.
Springer Verlag
–
Springer also hosts a number of scientific databases, including SpringerLink, Springer Protocols, and SpringerImages. Book publications include major works, textbooks, monographs and book series. Springer has major offices in Berlin, Heidelberg, Dordrecht, on 15 January 2015, Holtzbrinck Publishing Group / Nature Publishing Group and Springer Science+Business Media announced a merger. In 1964, Springer expanded its business internationally, opening an office in New York City, offices in Tokyo, Paris, Milan, Hong Kong, and Delhi soon followed. The academic publishing company BertelsmannSpringer was formed after Bertelsmann bought a majority stake in Springer-Verlag in 1999, the British investment groups Cinven and Candover bought BertelsmannSpringer from Bertelsmann in 2003. They merged the company in 2004 with the Dutch publisher Kluwer Academic Publishers which they bought from Wolters Kluwer in 2002, Springer acquired the open-access publisher BioMed Central in October 2008 for an undisclosed amount. In 2009, Cinven and Candover sold Springer to two private equity firms, EQT Partners and Government of Singapore Investment Corporation, the closing of the sale was confirmed in February 2010 after the competition authorities in the USA and in Europe approved the transfer. In 2011, Springer acquired Pharma Marketing and Publishing Services from Wolters Kluwer, in 2013, the London-based private equity firm BC Partners acquired a majority stake in Springer from EQT and GIC for $4.4 billion. In 2014, it was revealed that Springer had published 16 fake papers in its journals that had been computer-generated using SCIgen, Springer subsequently removed all the papers from these journals. IEEE had also done the thing by removing more than 100 fake papers from its conference proceedings. In 2015, Springer retracted 64 of the papers it had published after it was found that they had gone through a fraudulent peer review process, Springer provides its electronic book and journal content on its SpringerLink site, which launched in 1996. SpringerProtocols is home to a collection of protocols, recipes which provide step-by-step instructions for conducting experiments in research labs, SpringerImages was launched in 2008 and offers a collection of currently 1.8 million images spanning science, technology, and medicine. SpringerMaterials was launched in 2009 and is a platform for accessing the Landolt-Börnstein database of research and information on materials, authorMapper is a free online tool for visualizing scientific research that enables document discovery based on author locations and geographic maps. The tool helps users explore patterns in scientific research, identify trends, discover collaborative relationships. While open-access publishing typically requires the author to pay a fee for copyright retention, for example, a national institution in Poland allows authors to publish in open-access journals without incurring any personal cost - but using public funds. Springer is a member of the Open Access Scholarly Publishers Association, the Academic Publishing Industry, A Story of Merger and Acquisition – via Northern Illinois University
16.
Pythagorean prime
–
A Pythagorean prime is a prime number of the form 4n +1. Pythagorean primes are exactly the odd numbers that are the sum of two squares. For instance, the number 5 is a Pythagorean prime, √5 is the hypotenuse of a triangle with legs 1 and 2. The first few Pythagorean primes are 5,13,17,29,37,41,53,61,73,89,97,101,109,113, by Dirichlets theorem on arithmetic progressions, this sequence is infinite. More strongly, for n, the numbers of Pythagorean and non-Pythagorean primes up to n are approximately equal. However, the number of Pythagorean primes up to n is frequently smaller than the number of non-Pythagorean primes. For example, the values of n up to 600000 for which there are more Pythagorean than non-Pythagorean odd primes are 26861 and 26862. Sum of one odd square and one square is congruent to 1 mod 4. Fermats theorem on sums of two states that the prime numbers that can be represented as sums of two squares are exactly 2 and the odd primes congruent to 1 mod 4. The representation of such number is unique, up to the ordering of the two squares. Another way to understand this representation as a sum of two squares involves Gaussian integers, the numbers whose real part and imaginary part are both integers. The norm of a Gaussian integer x + yi is the number x2 + y2, thus, the Pythagorean primes occur as norms of Gaussian integers, while other primes do not. Within the Gaussian integers, the Pythagorean primes are not considered to be prime numbers, similarly, their squares can be factored in a different way than their integer factorization, as p2 =22 =. The real and imaginary parts of the factors in these factorizations are the leg lengths of the right triangles having the given hypotenuses, in the finite field Z/p with p a Pythagorean prime, the polynomial equation x2 = −1 has two solutions. This may be expressed by saying that −1 is a quadratic residue mod p, in contrast, this equation has no solution in the finite fields Z/p where p is an odd prime but is not Pythagorean. Pythagorean Primes, including 5,13 and 137, sloanes A007350, Where prime race 4n-1 vs. 4n+1 changes leader. The On-Line Encyclopedia of Integer Sequences
17.
Pierpont prime
–
A Pierpont prime is a prime number of the form 2 u 3 v +1 for some nonnegative integers u and v. That is, they are the prime numbers p for which p −1 is 3-smooth. They are named after the mathematician James Pierpont, who introduced them in the study of regular polygons that can be constructed using conic sections. It is possible to prove that if v =0 and u >0, then u must be a power of 2, if v is positive then u must also be positive, and the Pierpont prime is of the form 6k +1. Empirically, the Pierpont primes do not seem to be rare or sparsely distributed. There are 36 Pierpont primes less than 106,59 less than 109,151 less than 1020, there are few restrictions from algebraic factorisations on the Pierpont primes, so there are no requirements like the Mersenne prime condition that the exponent must be prime. As there are Θ numbers of the form in this range. Andrew M. Gleason made this explicit, conjecturing there are infinitely many Pierpont primes. According to Gleasons conjecture there are Θ Pierpont primes smaller than N, when 2 u >3 v, the primality of 2 u 3 v +1 can be tested by Proths theorem. As part of the ongoing search for factors of Fermat numbers. The following table gives values of m, k, and n such that k ⋅2 n +1 divides 22 m +1, the left-hand side is a Pierpont prime when k is a power of 3, the right-hand side is a Fermat number. As of 2017, the largest known Pierpont prime is 3 ×210829346 +1, whose primality was discovered by Sai Yik Tang, in the mathematics of paper folding, the Huzita axioms define six of the seven types of fold possible. It has been shown that these folds are sufficient to allow the construction of the points that solve any cubic equation. It follows that they allow any regular polygon of N sides to be formed, as long as N >3 and of the form 2m3nρ and this is the same class of regular polygons as those that can be constructed with a compass, straightedge, and angle-trisector. Regular polygons which can be constructed with compass and straightedge are the special case where n =0 and ρ is a product of distinct Fermat primes, themselves a subset of Pierpont primes. In 1895, James Pierpont studied the same class of regular polygons, Pierpont generalized compass and straightedge constructions in a different way, by adding the ability to draw conic sections whose coefficients come from previously constructed points. As he showed, the regular N-gons that can be constructed with these operations are the ones such that the totient of N is 3-smooth. Since the totient of a prime is formed by subtracting one from it, however, Pierpont did not describe the form of the composite numbers with 3-smooth totients. As Gleason later showed, these numbers are exactly the ones of the form 2m3nρ given above, the smallest prime that is not a Pierpont prime is 11, therefore, the hendecagon is the smallest regular polygon that cannot be constructed with compass, straightedge and angle trisector
18.
Pell number
–
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1,2,5,12, and 29. The numerators of the sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers, these numbers form a second infinite sequence that begins with 2,6,14,34. As with Pells equation, the name of the Pell numbers stems from Leonhard Eulers mistaken attribution of the equation, the Pell–Lucas numbers are also named after Édouard Lucas, who studied sequences defined by recurrences of this type, the Pell and companion Pell numbers are Lucas sequences. The Pell numbers are defined by the recurrence relation P n = {0 if n =0,1 if n =1,2 P n −1 + P n −2 otherwise. In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell number and the Pell number before that. The first few terms of the sequence are 0,1,2,5,12,29,70,169,408,985,2378,5741,13860, …. The Pell numbers can also be expressed by the closed form formula P n = n − n 22, a third definition is possible, from the matrix formula = n. Pell numbers arise historically and most notably in the rational approximation to √2. If two large integers x and y form a solution to the Pell equation x 2 −2 y 2 = ±1 and that is, the solutions have the form P n −1 + P n P n. The approximation 2 ≈577408 of this type was known to Indian mathematicians in the third or fourth century B. C, the Greek mathematicians of the fifth century B. C. also knew of this sequence of approximations, Plato refers to the numerators as rational diameters. In the 2nd century CE Theon of Smyrna used the term the side and these approximations can be derived from the continued fraction expansion of 2,2 =1 +12 +12 +12 +12 +12 + ⋱. As Knuth describes, the fact that Pell numbers approximate √2 allows them to be used for accurate rational approximations to an octagon with vertex coordinates. All vertices are equally distant from the origin, and form uniform angles around the origin. Alternatively, the points, and form approximate octagons in which the vertices are equally distant from the origin. A Pell prime is a Pell number that is prime, the first few Pell primes are 2,5,29,5741, …. The indices of these primes within the sequence of all Pell numbers are 2,3,5,11,13,29,41,53,59,89,97,101,167,181,191, … These indices are all themselves prime. As with the Fibonacci numbers, a Pell number Pn can only be prime if n itself is prime, the only Pell numbers that are squares, cubes, or any higher power of an integer are 0,1, and 169 =132. However, despite having so few squares or other powers, Pell numbers have a connection to square triangular numbers