Effective temperature
The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is used as an estimate of a body's surface temperature when the body's emissivity curve is not known; when the star's or planet's net emissivity in the relevant wavelength band is less than unity, the actual temperature of the body will be higher than the effective temperature. The net emissivity may be low due to surface or atmospheric properties, including greenhouse effect; the effective temperature of a star is the temperature of a black body with the same luminosity per surface area as the star and is defined according to the Stefan–Boltzmann law FBol = σTeff4. Notice that the total luminosity of a star is L = 4πR2σTeff4, where R is the stellar radius; the definition of the stellar radius is not straightforward. More rigorously the effective temperature corresponds to the temperature at the radius, defined by a certain value of the Rosseland optical depth within the stellar atmosphere.
The effective temperature and the bolometric luminosity are the two fundamental physical parameters needed to place a star on the Hertzsprung–Russell diagram. Both effective temperature and bolometric luminosity depend on the chemical composition of a star; the effective temperature of our Sun is around 5780 kelvins. Stars have a decreasing temperature gradient; the "core temperature" of the Sun—the temperature at the centre of the Sun where nuclear reactions take place—is estimated to be 15,000,000 K. The color index of a star indicates its temperature from the cool—by stellar standards—red M stars that radiate in the infrared to the hot blue O stars that radiate in the ultraviolet; the effective temperature of a star indicates the amount of heat that the star radiates per unit of surface area. From the warmest surfaces to the coolest is the sequence of stellar classifications known as O, B, A, F, G, K, M. A red star could be a tiny red dwarf, a star of feeble energy production and a small surface or a bloated giant or supergiant star such as Antares or Betelgeuse, either of which generates far greater energy but passes it through a surface so large that the star radiates little per unit of surface area.
A star near the middle of the spectrum, such as the modest Sun or the giant Capella radiates more energy per unit of surface area than the feeble red dwarf stars or the bloated supergiants, but much less than such a white or blue star as Vega or Rigel. To find the effective temperature of a planet, it can be calculated by equating the power received by the planet to the known power emitted by a blackbody of temperature T. Take the case of a planet at a distance D from the star, of luminosity L. Assuming the star radiates isotropically and that the planet is a long way from the star, the power absorbed by the planet is given by treating the planet as a disc of radius r, which intercepts some of the power, spread over the surface of a sphere of radius D; the calculation assumes the planet reflects some of the incoming radiation by incorporating a parameter called the albedo. An albedo of 1 means that all the radiation is reflected, an albedo of 0 means all of it is absorbed; the expression for absorbed power is then: P a b s = L r 2 4 D 2 The next assumption we can make is that the entire planet is at the same temperature T, that the planet radiates as a blackbody.
The Stefan–Boltzmann law gives an expression for the power radiated by the planet: P r a d = 4 π r 2 σ T 4 Equating these two expressions and rearranging gives an expression for the effective temperature: T = L 16 π σ D 2 4 Note that the planet's radius has cancelled out of the final expression. The effective temperature for Jupiter from this calculation is 88 K and 51 Pegasi b is 1,258 K. A better estimate of effective temperature for some planets, such as Jupiter, would need to include the internal heating as a power input; the actual temperature depends on atmosphere effects. The actual temperature from spectroscopic analysis for HD 209458 b is 1,130 K, but the effective temperature is 1,359 K; the internal heating within Jupiter raises the effective temperature to about 152 K. The surface temperature of a planet can be estimated by modifying the effective-temperature calculation to account for emissivity and temperature variation; the area of the planet that absorbs the power from the star is Aabs, some fraction of the total surface area Atotal = 4πr2, where r is the radius of the planet.
This area intercepts some of the power, spread over the surface of a sphere of radius D. We allow the planet to reflect some of the incoming radiation by incorporating a parameter a called the albedo. An albedo of 1 means that all the radiation is reflected, an albedo
Parsec
The parsec is a unit of length used to measure large distances to astronomical objects outside the Solar System. A parsec is defined as the distance at which one astronomical unit subtends an angle of one arcsecond, which corresponds to 648000/π astronomical units. One parsec is equal to 31 trillion kilometres or 19 trillion miles; the nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun. Most of the stars visible to the unaided eye in the night sky are within 500 parsecs of the Sun; the parsec unit was first suggested in 1913 by the British astronomer Herbert Hall Turner. Named as a portmanteau of the parallax of one arcsecond, it was defined to make calculations of astronomical distances from only their raw observational data quick and easy for astronomers. For this reason, it is the unit preferred in astronomy and astrophysics, though the light-year remains prominent in popular science texts and common usage. Although parsecs are used for the shorter distances within the Milky Way, multiples of parsecs are required for the larger scales in the universe, including kiloparsecs for the more distant objects within and around the Milky Way, megaparsecs for mid-distance galaxies, gigaparsecs for many quasars and the most distant galaxies.
In August 2015, the IAU passed Resolution B2, which, as part of the definition of a standardized absolute and apparent bolometric magnitude scale, mentioned an existing explicit definition of the parsec as 648000/π astronomical units, or 3.08567758149137×1016 metres. This corresponds to the small-angle definition of the parsec found in many contemporary astronomical references; the parsec is defined as being equal to the length of the longer leg of an elongated imaginary right triangle in space. The two dimensions on which this triangle is based are its shorter leg, of length one astronomical unit, the subtended angle of the vertex opposite that leg, measuring one arc second. Applying the rules of trigonometry to these two values, the unit length of the other leg of the triangle can be derived. One of the oldest methods used by astronomers to calculate the distance to a star is to record the difference in angle between two measurements of the position of the star in the sky; the first measurement is taken from the Earth on one side of the Sun, the second is taken half a year when the Earth is on the opposite side of the Sun.
The distance between the two positions of the Earth when the two measurements were taken is twice the distance between the Earth and the Sun. The difference in angle between the two measurements is twice the parallax angle, formed by lines from the Sun and Earth to the star at the distant vertex; the distance to the star could be calculated using trigonometry. The first successful published direct measurements of an object at interstellar distances were undertaken by German astronomer Friedrich Wilhelm Bessel in 1838, who used this approach to calculate the 3.5-parsec distance of 61 Cygni. The parallax of a star is defined as half of the angular distance that a star appears to move relative to the celestial sphere as Earth orbits the Sun. Equivalently, it is the subtended angle, from that star's perspective, of the semimajor axis of the Earth's orbit; the star, the Sun and the Earth form the corners of an imaginary right triangle in space: the right angle is the corner at the Sun, the corner at the star is the parallax angle.
The length of the opposite side to the parallax angle is the distance from the Earth to the Sun (defined as one astronomical unit, the length of the adjacent side gives the distance from the sun to the star. Therefore, given a measurement of the parallax angle, along with the rules of trigonometry, the distance from the Sun to the star can be found. A parsec is defined as the length of the side adjacent to the vertex occupied by a star whose parallax angle is one arcsecond; the use of the parsec as a unit of distance follows from Bessel's method, because the distance in parsecs can be computed as the reciprocal of the parallax angle in arcseconds. No trigonometric functions are required in this relationship because the small angles involved mean that the approximate solution of the skinny triangle can be applied. Though it may have been used before, the term parsec was first mentioned in an astronomical publication in 1913. Astronomer Royal Frank Watson Dyson expressed his concern for the need of a name for that unit of distance.
He proposed the name astron, but mentioned that Carl Charlier had suggested siriometer and Herbert Hall Turner had proposed parsec. It was Turner's proposal. In the diagram above, S represents the Sun, E the Earth at one point in its orbit, thus the distance ES is one astronomical unit. The angle SDE is one arcsecond so by definition D is a point in space at a distance of one parsec from the Sun. Through trigonometry, the distance SD is calculated as follows: S D = E S tan 1 ″ S D ≈ E S 1 ″ = 1 au 1 60 × 60 × π
Apsis
The term apsis refers to an extreme point in the orbit of an object. It denotes either the respective distance of the bodies; the word comes via Latin from Greek, there denoting a whole orbit, is cognate with apse. Except for the theoretical possibility of one common circular orbit for two bodies of equal mass at diametral positions, there are two apsides for any elliptic orbit, named with the prefixes peri- and ap-/apo-, added in reference to the body being orbited. All periodic orbits are, according to Newton's Laws of motion, ellipses: either the two individual ellipses of both bodies, with the center of mass of this two-body system at the one common focus of the ellipses, or the orbital ellipses, with one body taken as fixed at one focus, the other body orbiting this focus. All these ellipses share a straight line, the line of apsides, that contains their major axes, the foci, the vertices, thus the periapsis and the apoapsis; the major axis of the orbital ellipse is the distance of the apsides, when taken as points on the orbit, or their sum, when taken as distances.
The major axes of the individual ellipses around the barycenter the contributions to the major axis of the orbital ellipses are inverse proportional to the masses of the bodies, i.e. a bigger mass implies a smaller axis/contribution. Only when one mass is sufficiently larger than the other, the individual ellipse of the smaller body around the barycenter comprises the individual ellipse of the larger body as shown in the second figure. For remarkable asymmetry, the barycenter of the two bodies may lie well within the bigger body, e.g. the Earth–Moon barycenter is about 75% of the way from Earth's center to its surface. If the smaller mass is negligible compared to the larger the orbital parameters are independent of the smaller mass. For general orbits, the terms periapsis and apoapsis are used. Pericenter and apocenter are equivalent alternatives, referring explicitly to the respective points on the orbits, whereas periapsis and apoapsis may refer to the smallest and largest distances of the orbiter and its host.
For a body orbiting the Sun, the point of least distance is the perihelion, the point of greatest distance is the aphelion. The terms become apastron when discussing orbits around other stars. For any satellite of Earth, including the Moon, the point of least distance is the perigee and greatest distance the apogee, from Ancient Greek Γῆ, "land" or "earth". For objects in lunar orbit, the point of least distance is sometimes called the pericynthion and the greatest distance the apocynthion. Perilune and apolune are used. In orbital mechanics, the apsides technically refer to the distance measured between the barycenters of the central body and orbiting body. However, in the case of a spacecraft, the terms are used to refer to the orbital altitude of the spacecraft above the surface of the central body; these formulae characterize the pericenter and apocenter of an orbit: Pericenter Maximum speed, v per = μ a, at minimum distance, r per = a. Apocenter Minimum speed, v ap = μ a, at maximum distance, r ap = a.
While, in accordance with Kepler's laws of planetary motion and the conservation of energy, these two quantities are constant for a given orbit: Specific relative angular momentum h = μ a Specific orbital energy ε = − μ 2 a where: a is the semi-major axis: a = r per + r ap 2 μ is the standard gravitational parameter e is the eccentricity, defined as e = r ap − r per r ap + r per = 1 − 2 r ap r per + 1 Note t
SIMBAD
SIMBAD is an astronomical database of objects beyond the Solar System. It is maintained by the Centre de données astronomiques de France. SIMBAD was created by merging the Catalog of Stellar Identifications and the Bibliographic Star Index as they existed at the Meudon Computer Centre until 1979, expanded by additional source data from other catalogues and the academic literature; the first on-line interactive version, known as Version 2, was made available in 1981. Version 3, developed in the C language and running on UNIX stations at the Strasbourg Observatory, was released in 1990. Fall of 2006 saw the release of Version 4 of the database, now stored in PostgreSQL, the supporting software, now written in Java; as of 10 February 2017, SIMBAD contains information for 9,099,070 objects under 24,529,080 different names, with 327,634 bibliographical references and 15,511,733 bibliographic citations. The minor planet 4692 SIMBAD was named in its honour. Planetary Data System – NASA's database of information on SSSB, maintained by JPL and Caltech.
NASA/IPAC Extragalactic Database – a database of information on objects outside the Milky Way maintained by JPL. NASA Exoplanet Archive – an online astronomical exoplanet catalog and data service Bibcode SIMBAD, Strasbourg SIMBAD, Harvard
Metallicity
In astronomy, metallicity is used to describe the abundance of elements present in an object that are heavier than hydrogen or helium. Most of the physical matter in the Universe is in the form of hydrogen and helium, so astronomers use the word "metals" as a convenient short term for "all elements except hydrogen and helium"; this usage is distinct from the usual physical definition of a solid metal. For example and nebulae with high abundances of carbon, nitrogen and neon are called "metal-rich" in astrophysical terms though those elements are non-metals in chemistry; the presence of heavier elements hails from stellar nucleosynthesis, the theory that the majority of elements heavier than hydrogen and helium in the Universe are formed in the cores of stars as they evolve. Over time, stellar winds and supernovae deposit the metals into the surrounding environment, enriching the interstellar medium and providing recycling materials for the birth of new stars, it follows that older generations of stars, which formed in the metal-poor early Universe have lower metallicities than those of younger generations, which formed in a more metal-rich Universe.
Observed changes in the chemical abundances of different types of stars, based on the spectral peculiarities that were attributed to metallicity, led astronomer Walter Baade in 1944 to propose the existence of two different populations of stars. These became known as Population I and Population II stars. A third stellar population was introduced in 1978, known as Population III stars; these metal-poor stars were theorised to have been the "first-born" stars created in the Universe. Astronomers use several different methods to describe and approximate metal abundances, depending on the available tools and the object of interest; some methods include determining the fraction of mass, attributed to gas versus metals, or measuring the ratios of the number of atoms of two different elements as compared to the ratios found in the Sun. Stellar composition is simply defined by the parameters X, Y and Z. Here X is the mass fraction of hydrogen, Y is the mass fraction of helium, Z is the mass fraction of all the remaining chemical elements.
Thus X + Y + Z = 1.00. In most stars, nebulae, H II regions, other astronomical sources and helium are the two dominant elements; the hydrogen mass fraction is expressed as X ≡ m H / M, where M is the total mass of the system, m H is the fractional mass of the hydrogen it contains. The helium mass fraction is denoted as Y ≡ m He / M; the remainder of the elements are collectively referred to as "metals", the metallicity—the mass fraction of elements heavier than helium—can be calculated as Z = ∑ i > He m i M = 1 − X − Y. For the surface of the Sun, these parameters are measured to have the following values: Due to the effects of stellar evolution, neither the initial composition nor the present day bulk composition of the Sun is the same as its present-day surface composition; the overall stellar metallicity is defined using the total iron content of the star, as iron is among the easiest to measure with spectral observations in the visible spectrum. The abundance ratio is defined as the logarithm of the ratio of a star's iron abundance compared to that of the Sun and is expressed thus: = log 10 star − log 10 sun, where N Fe and N H are the number of iron and hydrogen atoms per unit of volume respectively.
The unit used for metallicity is the dex, contraction of "decimal exponent". By this formulation, stars with a higher metallicity than the Sun have a positive logarithmic value, whereas those with a lower metallicity than the Sun have a negative value. For example, stars with a value of +1 have 10 times the metallicity of the Sun. Young Population I stars have higher iron-to-hydrogen ratios than older Population II stars. Primordial Population III stars are estimated to have a metallicity of less than −6.0, that is, less than a millionth of the abundance of iron in the Sun. The same notation is used to express variations in abundances between other the individual elements as compared to solar proportions. For example, the notati
Proper motion
Proper motion is the astronomical measure of the observed changes in the apparent places of stars or other celestial objects in the sky, as seen from the center of mass of the Solar System, compared to the abstract background of the more distant stars. The components for proper motion in the equatorial coordinate system are given in the direction of right ascension and of declination, their combined value is computed as the total proper motion. It has dimensions of angle per time arcseconds per year or milliarcseconds per year. Knowledge of the proper motion and radial velocity allows calculations of true stellar motion or velocity in space in respect to the Sun, by coordinate transformation, the motion in respect to the Milky Way. Proper motion is not "proper", because it includes a component due to the motion of the Solar System itself. Over the course of centuries, stars appear to maintain nearly fixed positions with respect to each other, so that they form the same constellations over historical time.
Ursa Major or Crux, for example, looks nearly the same now. However, precise long-term observations show that the constellations change shape, albeit slowly, that each star has an independent motion; this motion is caused by the movement of the stars relative to the Solar System. The Sun travels in a nearly circular orbit about the center of the Milky Way at a speed of about 220 km/s at a radius of 8 kPc from the center, which can be taken as the rate of rotation of the Milky Way itself at this radius; the proper motion is a two-dimensional vector and is thus defined by two quantities: its position angle and its magnitude. The first quantity indicates the direction of the proper motion on the celestial sphere, the second quantity is the motion's magnitude expressed in arcseconds per year or milliarcsecond per year. Proper motion may alternatively be defined by the angular changes per year in the star's right ascension and declination, using a constant epoch in defining these; the components of proper motion by convention are arrived at.
Suppose an object moves from coordinates to coordinates in a time Δt. The proper motions are given by: μ α = α 2 − α 1 Δ t, μ δ = δ 2 − δ 1 Δ t; the magnitude of the proper motion μ is given by the Pythagorean theorem: μ 2 = μ δ 2 + μ α 2 ⋅ cos 2 δ, μ 2 = μ δ 2 + μ α ∗ 2, where δ is the declination. The factor in cos2δ accounts for the fact that the radius from the axis of the sphere to its surface varies as cosδ, for example, zero at the pole. Thus, the component of velocity parallel to the equator corresponding to a given angular change in α is smaller the further north the object's location; the change μα, which must be multiplied by cosδ to become a component of the proper motion, is sometimes called the "proper motion in right ascension", μδ the "proper motion in declination". If the proper motion in right ascension has been converted by cosδ, the result is designated μα*. For example, the proper motion results in right ascension in the Hipparcos Catalogue have been converted. Hence, the individual proper motions in right ascension and declination are made equivalent for straightforward calculations of various other stellar motions.
The position angle θ is related to these components by: μ sin θ = μ α cos δ = μ α ∗, μ cos θ = μ δ. Motions in equatorial coordinates can be converted to motions in galactic coordinates. For the majority of stars seen in the sky, the observed proper motions are small and unremarkable; such stars are either faint or are distant, have changes of below 10 milliarcseconds per year, do not appear to move appreciably over many millennia. A few do have significant motions, are called high-proper motion stars. Motions can be in seemingly random directions. Two or more stars, double stars or open star clusters, which are moving in similar directions, exhibit so-called shared or common proper motion, suggesting they may be gravitationally attached or share similar motion in space. Barnard's Star has the largest proper motion of all stars, moving at 10.3 seconds of arc per year. L
Orbital eccentricity
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit, greater than 1 is a hyperbola; the term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is used for the isolated two-body problem, but extensions exist for objects following a Klemperer rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit; the eccentricity of this Kepler orbit is a non-negative number. The eccentricity may take the following values: circular orbit: e = 0 elliptic orbit: 0 < e < 1 parabolic trajectory: e = 1 hyperbolic trajectory: e > 1 The eccentricity e is given by e = 1 + 2 E L 2 m red α 2 where E is the total orbital energy, L is the angular momentum, mred is the reduced mass, α the coefficient of the inverse-square law central force such as gravity or electrostatics in classical physics: F = α r 2 or in the case of a gravitational force: e = 1 + 2 ε h 2 μ 2 where ε is the specific orbital energy, μ the standard gravitational parameter based on the total mass, h the specific relative angular momentum.
For values of e from 0 to 1 the orbit's shape is an elongated ellipse. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola. Radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits hence eccentricity equal to one. Keeping the energy constant and reducing the angular momentum, elliptic and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the hyperbolic trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a perfect circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, one must calculate the inverse sine to find the projection angle of 11.86 degrees. Next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity; the word "eccentricity" comes from Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros "out of the center", from ἐκ- ek-, "out of" + κέντρον kentron "center".
"Eccentric" first appeared in English in 1551, with the definition "a circle in which the earth, sun. Etc. deviates from its center". By five years in 1556, an adjectival form of the word had developed; the eccentricity of an orbit can be calculated from the orbital state vectors as the magnitude of the eccentricity vector: e = | e | where: e is the eccentricity vector. For elliptical orbits it can be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p = 1 − 2 r a r p + 1 where: ra is the radius at apoapsis. Rp is the radius at periapsis; the eccentricity of an elliptical orbit can be used to obtain the ratio of the periapsis to the apoapsis: r p r a = 1 − e 1 + e For Earth, orbital eccentricity ≈ 0.0167, apoapsis= aphelion and periapsis= perihelion relative to sun. For Earth's annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈ 1.034 relative to center point of path. The eccentricity of the Earth's orbit is about 0.0167.
Ve