1.
Decimal prefix
–
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or fraction of the unit. While all metric prefixes in use today are decadic, historically there have been a number of binary metric prefixes as well. Each prefix has a symbol that is prepended to the unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand, the prefix milli-, likewise, may be added to metre to indicate division by one thousand, one millimetre is equal to one thousandth of a metre. Decimal multiplicative prefixes have been a feature of all forms of the system with six dating back to the systems introduction in the 1790s. Metric prefixes have even been prepended to non-metric units, the SI prefixes are standardized for use in the International System of Units by the International Bureau of Weights and Measures in resolutions dating from 1960 to 1991. Since 2009, they have formed part of the International System of Quantities, the BIPM specifies twenty prefixes for the International System of Units. Each prefix name has a symbol which is used in combination with the symbols for units of measure. For example, the symbol for kilo- is k, and is used to produce km, kg, and kW, which are the SI symbols for kilometre, kilogram, prefixes corresponding to an integer power of one thousand are generally preferred. Hence 100 m is preferred over 1 hm or 10 dam, the prefixes hecto, deca, deci, and centi are commonly used for everyday purposes, and the centimetre is especially common. However, some building codes require that the millimetre be used in preference to the centimetre, because use of centimetres leads to extensive usage of decimal points. Prefixes may not be used in combination and this also applies to mass, for which the SI base unit already contains a prefix. For example, milligram is used instead of microkilogram, in the arithmetic of measurements having units, the units are treated as multiplicative factors to values. If they have prefixes, all but one of the prefixes must be expanded to their numeric multiplier,1 km2 means one square kilometre, or the area of a square of 1000 m by 1000 m and not 1000 square metres. 2 Mm3 means two cubic megametres, or the volume of two cubes of 1000000 m by 1000000 m by 1000000 m or 2×1018 m3, and not 2000000 cubic metres, examples 5 cm = 5×10−2 m =5 ×0.01 m =0. The prefixes, including those introduced after 1960, are used with any metric unit, metric prefixes may also be used with non-metric units. The choice of prefixes with a unit is usually dictated by convenience of use. Unit prefixes for amounts that are larger or smaller than those actually encountered are seldom used

2.
Unit prefix
–
A unit prefix is a specifier or mnemonic that is prepended to units of measurement to indicate multiples or fractions of the units. Units of various sizes are formed by the use of such prefixes. The prefixes of the system, such as kilo and milli. In information technology it is common to use binary prefixes, which are based on powers of two, historically, many prefixes have been used or proposed by various sources, but only a narrow set has been recognised by standards organisations. The prefixes of the metric system precede a basic unit of measure to indicate a decadic multiple, each prefix has a unique symbol that is prepended to the unit symbol. Some of the date back to the introduction of the metric system in the 1790s, but new prefixes have been added. The International Bureau of Weights and Measures has standardised twenty metric prefixes in resolutions dating from 1960 to 1991 for use with the International System of Units, although formerly in use, the SI disallows combining prefixes, the microkilogram or centimillimetre, for example, are not permitted. Prefixes corresponding to powers of one thousand are usually preferred, however, units such as the hectopascal, hectare, decibel, centimetre, in general, prefixes are used with any metric unit, but may also be used with non-metric units. Some combinations, however, are more common than others, the choice of prefixes for a given unit has often arisen by convenience of use and historical developments. Unit prefixes that are larger or smaller than encountered in practice are seldom used. In most contexts only a few, the most common, combinations are established, for example, prefixes for multiples greater than one thousand are rarely applied to the gram or metre. Some prefixes used in versions of the metric system are no longer used. The prefix myrio- was a spelling variant for myria-, as proposed by Thomas Young. A binary prefix indicates multiplication by a power of two, the tenth power of 2 has the value 1024, which is close to 1000. This has prompted the use of the prefixes kilo, mega, and giga to also denote the powers of 1024 which is common in information technology with the unit of digital information. Units of information are not covered in the International System of Units, for example, in citations of main memory or RAM capacity, kilobyte, megabyte and gigabyte customarily mean 1024,1048576 and 1073741824 bytes respectively. In the specifications of hard drive capacities and network transmission bit rates, on the other hand, decimal prefixes. For example, a 500-gigabyte hard drive holds 500 billion bytes, the ambiguity has led to some confusion and even of lawsuits from purchasers who were expecting 220 or 230 and considered themselves shortchanged by the seller

3.
Metric system
–
The metric system is an internationally agreed decimal system of measurement. Many sources also cite Liberia and Myanmar as the other countries not to have done so. Although the originators intended to devise a system that was accessible to all. Control of the units of measure was maintained by the French government until 1875, when it was passed to an intergovernmental organisation. From its beginning, the features of the metric system were the standard set of interrelated base units. These base units are used to larger and smaller units that could replace a huge number of other units of measure in existence. Although the system was first developed for use, the development of coherent units of measure made it particularly suitable for science. Although the metric system has changed and developed since its inception, designed for transnational use, it consisted of a basic set of units of measurement, now known as base units. At the outbreak of the French Revolution in 1789, most countries, the metric system was designed to be universal—in the words of the French philosopher Marquis de Condorcet it was to be for all people for all time. However, these overtures failed and the custody of the metric system remained in the hands of the French government until 1875. In languages where the distinction is made, unit names are common nouns, the concept of using consistent classical names for the prefixes was first proposed in a report by the Commission on Weights and Measures in May 1793. The prefix kilo, for example, is used to multiply the unit by 1000, thus the kilogram and kilometre are a thousand grams and metres respectively, and a milligram and millimetre are one thousandth of a gram and metre respectively. These relations can be written symbolically as,1 mg =0, however,1935 extensions to the prefix system did not follow this convention, the prefixes nano- and micro-, for example have Greek roots. During the 19th century the prefix myria-, derived from the Greek word μύριοι, was used as a multiplier for 10000, prefixes are not usually used to indicate multiples of a second greater than 1, the non-SI units of minute, hour and day are used instead. On the other hand, prefixes are used for multiples of the unit of volume. The base units used in the system must be realisable. Each of the units in SI is accompanied by a mise en pratique published by the BIPM that describes in detail at least one way in which the base unit can be measured. In practice, such realisation is done under the auspices of a mutual acceptance arrangement, in the original version of the metric system the base units could be derived from a specified length and the weight of a specified volume of pure water

4.
Orders of magnitude (numbers)
–
This list contains selected positive numbers in increasing order, including counts of things, dimensionless quantity and probabilities. Mathematics – Writing, Approximately 10−183,800 is a rough first estimate of the probability that a monkey, however, taking punctuation, capitalization, and spacing into account, the actual probability is far lower, around 10−360,783. Computing, The number 1×10−6176 is equal to the smallest positive non-zero value that can be represented by a quadruple-precision IEEE decimal floating-point value, Computing, The number 6. 5×10−4966 is approximately equal to the smallest positive non-zero value that can be represented by a quadruple-precision IEEE floating-point value. Computing, The number 3. 6×10−4951 is approximately equal to the smallest positive non-zero value that can be represented by a 80-bit x86 double-extended IEEE floating-point value. Computing, The number 1×10−398 is equal to the smallest positive non-zero value that can be represented by a double-precision IEEE decimal floating-point value, Computing, The number 4. 9×10−324 is approximately equal to the smallest positive non-zero value that can be represented by a double-precision IEEE floating-point value. Computing, The number 1×10−101 is equal to the smallest positive non-zero value that can be represented by a single-precision IEEE decimal floating-point value, Mathematics, The probability in a game of bridge of all four players getting a complete suit is approximately 4. 47×10−28. ISO, yocto- ISO, zepto- Mathematics, The probability of matching 20 numbers for 20 in a game of keno is approximately 2.83 × 10−19. ISO, atto- Mathematics, The probability of rolling snake eyes 10 times in a row on a pair of dice is about 2. 74×10−16. ISO, micro- Mathematics – Poker, The odds of being dealt a flush in poker are 649,739 to 1 against. Mathematics – Poker, The odds of being dealt a flush in poker are 72,192 to 1 against. Mathematics – Poker, The odds of being dealt a four of a kind in poker are 4,164 to 1 against, for a probability of 2.4 × 10−4. ISO, milli- Mathematics – Poker, The odds of being dealt a full house in poker are 693 to 1 against, for a probability of 1.4 × 10−3. Mathematics – Poker, The odds of being dealt a flush in poker are 507.8 to 1 against, Mathematics – Poker, The odds of being dealt a straight in poker are 253.8 to 1 against, for a probability of 4 × 10−3. Physics, α =0.007297352570, the fine-structure constant, ISO, deci- Mathematics – Poker, The odds of being dealt only one pair in poker are about 5 to 2 against, for a probability of 0.42. Demography, The population of Monowi, a village in Nebraska. Mathematics, √2 ≈1.414213562373095489, the ratio of the diagonal of a square to its side length. Mathematics, φ ≈1.618033988749895848, the golden ratio Mathematics, the number system understood by most computers, human scale, There are 10 digits on a pair of human hands, and 10 toes on a pair of human feet. Mathematics, The number system used in life, the decimal system, has 10 digits,0,1,2,3,4,5,6,7,8,9

5.
Metric prefix
–
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or fraction of the unit. While all metric prefixes in use today are decadic, historically there have been a number of binary metric prefixes as well. Each prefix has a symbol that is prepended to the unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand, the prefix milli-, likewise, may be added to metre to indicate division by one thousand, one millimetre is equal to one thousandth of a metre. Decimal multiplicative prefixes have been a feature of all forms of the system with six dating back to the systems introduction in the 1790s. Metric prefixes have even been prepended to non-metric units, the SI prefixes are standardized for use in the International System of Units by the International Bureau of Weights and Measures in resolutions dating from 1960 to 1991. Since 2009, they have formed part of the International System of Quantities, the BIPM specifies twenty prefixes for the International System of Units. Each prefix name has a symbol which is used in combination with the symbols for units of measure. For example, the symbol for kilo- is k, and is used to produce km, kg, and kW, which are the SI symbols for kilometre, kilogram, prefixes corresponding to an integer power of one thousand are generally preferred. Hence 100 m is preferred over 1 hm or 10 dam, the prefixes hecto, deca, deci, and centi are commonly used for everyday purposes, and the centimetre is especially common. However, some building codes require that the millimetre be used in preference to the centimetre, because use of centimetres leads to extensive usage of decimal points. Prefixes may not be used in combination and this also applies to mass, for which the SI base unit already contains a prefix. For example, milligram is used instead of microkilogram, in the arithmetic of measurements having units, the units are treated as multiplicative factors to values. If they have prefixes, all but one of the prefixes must be expanded to their numeric multiplier,1 km2 means one square kilometre, or the area of a square of 1000 m by 1000 m and not 1000 square metres. 2 Mm3 means two cubic megametres, or the volume of two cubes of 1000000 m by 1000000 m by 1000000 m or 2×1018 m3, and not 2000000 cubic metres, examples 5 cm = 5×10−2 m =5 ×0.01 m =0. The prefixes, including those introduced after 1960, are used with any metric unit, metric prefixes may also be used with non-metric units. The choice of prefixes with a unit is usually dictated by convenience of use. Unit prefixes for amounts that are larger or smaller than those actually encountered are seldom used

6.
International System of Units
–
The International System of Units is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, the system also establishes a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system was published in 1960 as the result of an initiative began in 1948. It is based on the system of units rather than any variant of the centimetre-gram-second system. The motivation for the development of the SI was the diversity of units that had sprung up within the CGS systems, the International System of Units has been adopted by most developed countries, however, the adoption has not been universal in all English-speaking countries. The metric system was first implemented during the French Revolution with just the metre and kilogram as standards of length, in the 1830s Carl Friedrich Gauss laid the foundations for a coherent system based on length, mass, and time. In the 1860s a group working under the auspices of the British Association for the Advancement of Science formulated the requirement for a coherent system of units with base units and derived units. Meanwhile, in 1875, the Treaty of the Metre passed responsibility for verification of the kilogram, in 1921, the Treaty was extended to include all physical quantities including electrical units originally defined in 1893. The units associated with these quantities were the metre, kilogram, second, ampere, kelvin, in 1971, a seventh base quantity, amount of substance represented by the mole, was added to the definition of SI. On 11 July 1792, the proposed the names metre, are, litre and grave for the units of length, area, capacity. The committee also proposed that multiples and submultiples of these units were to be denoted by decimal-based prefixes such as centi for a hundredth, on 10 December 1799, the law by which the metric system was to be definitively adopted in France was passed. Prior to this, the strength of the magnetic field had only been described in relative terms. The technique used by Gauss was to equate the torque induced on a magnet of known mass by the earth’s magnetic field with the torque induced on an equivalent system under gravity. The resultant calculations enabled him to assign dimensions based on mass, length, a French-inspired initiative for international cooperation in metrology led to the signing in 1875 of the Metre Convention. Initially the convention only covered standards for the metre and the kilogram, one of each was selected at random to become the International prototype metre and International prototype kilogram that replaced the mètre des Archives and kilogramme des Archives respectively. Each member state was entitled to one of each of the prototypes to serve as the national prototype for that country. Initially its prime purpose was a periodic recalibration of national prototype metres. The official language of the Metre Convention is French and the version of all official documents published by or on behalf of the CGPM is the French-language version

7.
Zeta
–
Zeta is the sixth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 7 and it was derived from the Phoenician letter zayin. Letters that arose from zeta include the Roman Z and Cyrillic З, unlike the other Greek letters, this letter did not take its name from the Phoenician letter from which it was derived, it was given a new name on the pattern of beta, eta and theta. The word zeta is the ancestor of zed, the name of the Latin letter Z in British English. Swedish and many Romanic languages, do not distinguish between the Greek and Roman forms of the letter, zeta is used to refer to the Roman letter Z as well as the Greek letter, the letter ζ represents the voiced alveolar fricative /z/ in Modern Greek. The sound represented by zeta in Classical Greek is disputed, see Ancient Greek phonology and Pronunciation of Ancient Greek in teaching. Most handbooks agree on attributing to it the pronunciation /zd/, PIE *zd becomes ζ in Greek. Without there would be an empty space between and in the Greek sound system, and a voiced affricate would not have a voiceless correspondent, alcman, Sappho, Alcaeus and Theocritus have σδ for Attic-Ionic ζ. Contra, The tradition would not have invented this special digraph for these poets if was the pronunciation in all Greek. Furthermore, this convention is not found in inscriptions. Thus, σδ indicates only a different pronunciation from Hellenistic Greek, the grammarians Dionysius Thrax and Dionysius of Halicarnassus class ζ with the double letters ψ, ξ and analyse it as σ + δ. Contra, The Roman grammarian Verrius Flaccus believed in the sequence, δ + σ. This suggests that different dialects had different pronunciations, the Greek inscriptions almost never write ζ in words like ὅσδε, τούσδε or εἰσδέχται, so there must have been a difference between this sound and the sound of ἵζω, Ἀθήναζε. It seems improbable that Greek would invent a special symbol for the bisegmental combination, furthermore, it is not clear that ζ was pronounced when it was originally invented. Mycenean Greek had a symbol to denote some sort of affricate or palatal consonant, ζ may have been invented for this sound. Boeotian, Elean, Laconian and Cretan δδ are more easily explained as a development from *dz than through an intermediary *zd. Greek in South Italy has preserved until modern times, contra, a) this may be a later development from or under the influence of Italian, b) even if it is derived from an ancient, it may be a dialectal pronunciation. Vulgar Latin inscriptions use the Greek letter Z for indigenous affricates, Italian, similarly, has consistently used Z for and

8.
Greek alphabet
–
It is the ancestor of the Latin and Cyrillic scripts. In its classical and modern forms, the alphabet has 24 letters, Modern and Ancient Greek use different diacritics. In standard Modern Greek spelling, orthography has been simplified to the monotonic system, examples In both Ancient and Modern Greek, the letters of the Greek alphabet have fairly stable and consistent symbol-to-sound mappings, making pronunciation of words largely predictable. Ancient Greek spelling was generally near-phonemic, among consonant letters, all letters that denoted voiced plosive consonants and aspirated plosives in Ancient Greek stand for corresponding fricative sounds in Modern Greek. This leads to groups of vowel letters denoting identical sounds today. Modern Greek orthography remains true to the spellings in most of these cases. The following vowel letters and digraphs are involved in the mergers, Modern Greek speakers typically use the same, modern, in other countries, students of Ancient Greek may use a variety of conventional approximations of the historical sound system in pronouncing Ancient Greek. Several letter combinations have special conventional sound values different from those of their single components, among them are several digraphs of vowel letters that formerly represented diphthongs but are now monophthongized. In addition to the three mentioned above, there is also ⟨ου⟩, pronounced /u/, the Ancient Greek diphthongs ⟨αυ⟩, ⟨ευ⟩ and ⟨ηυ⟩ are pronounced, and respectively in voicing environments in Modern Greek. The Modern Greek consonant combinations ⟨μπ⟩ and ⟨ντ⟩ stand for and respectively, ⟨τζ⟩ stands for, in addition, both in Ancient and Modern Greek, the letter ⟨γ⟩, before another velar consonant, stands for the velar nasal, thus ⟨γγ⟩ and ⟨γκ⟩ are pronounced like English ⟨ng⟩. There are also the combinations ⟨γχ⟩ and ⟨γξ⟩ and these signs were originally designed to mark different forms of the phonological pitch accent in Ancient Greek. The letter rho, although not a vowel, also carries a rough breathing in word-initial position, if a rho was geminated within a word, the first ρ always had the smooth breathing and the second the rough breathing leading to the transiliteration rrh. The vowel letters ⟨α, η, ω⟩ carry an additional diacritic in certain words, the iota subscript. This iota represents the former offglide of what were originally long diphthongs, ⟨ᾱι, ηι, ωι⟩, another diacritic used in Greek is the diaeresis, indicating a hiatus. In 1982, a new, simplified orthography, known as monotonic, was adopted for use in Modern Greek by the Greek state. Although it is not a diacritic, the comma has a function as a silent letter in a handful of Greek words, principally distinguishing ό. There are many different methods of rendering Greek text or Greek names in the Latin script, the form in which classical Greek names are conventionally rendered in English goes back to the way Greek loanwords were incorporated into Latin in antiquity. In this system, ⟨κ⟩ is replaced with ⟨c⟩, the diphthongs ⟨αι⟩ and ⟨οι⟩ are rendered as ⟨ae⟩ and ⟨oe⟩ respectively, and ⟨ει⟩ and ⟨ου⟩ are simplified to ⟨i⟩ and ⟨u⟩ respectively

9.
Greek numerals
–
Greek numerals are a system of writing numbers using the letters of the Greek alphabet. These alphabetic numerals are known as Ionic or Ionian numerals, Milesian numerals. In modern Greece, they are used for ordinal numbers. For ordinary cardinal numbers, however, Greece uses Arabic numerals, attic numerals, which were later adopted as the basis for Roman numerals, were the first alphabetic set. They were acrophonic, derived from the first letters of the names of the numbers represented and they ran =1, =5, =10, =100, =1000, and =10000. 50,500,5000, and 50000 were represented by the letter with minuscule powers of ten written in the top right corner, the same system was used outside of Attica, but the symbols varied with the local alphabets, in Boeotia, was 1000. The present system probably developed around Miletus in Ionia, 19th-century classicists placed its development in the 3rd century BC, the occasion of its first widespread use. The present system uses the 24 letters adopted by Euclid as well as three Phoenician and Ionic ones that were not carried over, digamma, koppa, and sampi. The position of characters within the numbering system imply that the first two were still in use while the third was not. Greek numerals are decimal, based on powers of 10, the units from 1 to 9 are assigned to the first nine letters of the old Ionic alphabet from alpha to theta. Each multiple of one hundred from 100 to 900 was then assigned its own separate letter as well and this alphabetic system operates on the additive principle in which the numeric values of the letters are added together to obtain the total. For example,241 was represented as, in ancient and medieval manuscripts, these numerals were eventually distinguished from letters using overbars, α, β, γ, etc. In medieval manuscripts of the Book of Revelation, the number of the Beast 666 is written as χξϛ, although the Greek alphabet began with only majuscule forms, surviving papyrus manuscripts from Egypt show that uncial and cursive minuscule forms began early. These new letter forms sometimes replaced the ones, especially in the case of the obscure numerals. The old Q-shaped koppa began to be broken up and simplified, the numeral for 6 changed several times. During antiquity, the letter form of digamma came to be avoided in favor of a special numerical one. By the Byzantine era, the letter was known as episemon and this eventually merged with the sigma-tau ligature stigma. In modern Greek, a number of changes have been made

10.
Atmosphere of Earth
–
The atmosphere of Earth is the layer of gases, commonly known as air, that surrounds the planet Earth and is retained by Earths gravity. The atmosphere of Earth protects life on Earth by absorbing solar radiation, warming the surface through heat retention. By volume, dry air contains 78. 09% nitrogen,20. 95% oxygen,0. 93% argon,0. 04% carbon dioxide, and small amounts of other gases. Air also contains an amount of water vapor, on average around 1% at sea level. The atmosphere has a mass of about 5. 15×1018 kg, the atmosphere becomes thinner and thinner with increasing altitude, with no definite boundary between the atmosphere and outer space. The Kármán line, at 100 km, or 1. 57% of Earths radius, is used as the border between the atmosphere and outer space. Atmospheric effects become noticeable during atmospheric reentry of spacecraft at an altitude of around 120 km, several layers can be distinguished in the atmosphere, based on characteristics such as temperature and composition. The study of Earths atmosphere and its processes is called atmospheric science, early pioneers in the field include Léon Teisserenc de Bort and Richard Assmann. The three major constituents of air, and therefore of Earths atmosphere, are nitrogen, oxygen, water vapor accounts for roughly 0. 25% of the atmosphere by mass. The remaining gases are often referred to as gases, among which are the greenhouse gases, principally carbon dioxide, methane, nitrous oxide. Filtered air includes trace amounts of other chemical compounds. Various industrial pollutants also may be present as gases or aerosols, such as chlorine, fluorine compounds, sulfur compounds such as hydrogen sulfide and sulfur dioxide may be derived from natural sources or from industrial air pollution. In general, air pressure and density decrease with altitude in the atmosphere, however, temperature has a more complicated profile with altitude, and may remain relatively constant or even increase with altitude in some regions. In this way, Earths atmosphere can be divided into five main layers, excluding the exosphere, Earth has four primary layers, which are the troposphere, stratosphere, mesosphere, and thermosphere. It extends from the exobase, which is located at the top of the thermosphere at an altitude of about 700 km above sea level, to about 10,000 km where it merges into the solar wind. This layer is composed of extremely low densities of hydrogen, helium and several heavier molecules including nitrogen, oxygen. The atoms and molecules are so far apart that they can travel hundreds of kilometers without colliding with one another, thus, the exosphere no longer behaves like a gas, and the particles constantly escape into space. These free-moving particles follow ballistic trajectories and may migrate in and out of the magnetosphere or the solar wind, the exosphere is located too far above Earth for any meteorological phenomena to be possible

11.
Seawater
–
Seawater, or salt water, is water from a sea or ocean. On average, seawater in the oceans has a salinity of about 3. 5% This means that every kilogram of seawater has approximately 35 grams of dissolved salts. Average density at the surface is 1.025 kg/l, seawater is denser than both fresh water and pure water because the dissolved salts increase the mass by a larger proportion than the volume. The freezing point of seawater decreases as salt concentration increases, at typical salinity, it freezes at about −2 °C. The coldest seawater ever recorded was in 2010, in a stream under an Antarctic glacier, seawater pH is typically limited to a range between 7.5 and 8.4. However, there is no universally accepted reference pH-scale for seawater, although the vast majority of seawater has a salinity of between 31 g/kg and 38 g/kg, seawater is not uniformly saline throughout the world. Where mixing occurs with fresh water runoff from river mouths, near melting glaciers or vast amounts precipitation, the most saline open sea is the Red Sea, where high rates of evaporation, low precipitation and low river run-off, and confined circulation result in unusually salty water. The salinity in isolated bodies of water can be considerably greater still, historically, several salinity scales were used to approximate the absolute salinity of seawater. A popular scale was the Practical Salinity Scale where salinity was measured in practical salinity units, the current standard for salinity is the Reference Salinity scale with the salinity expressed in units of g/kg. The density of surface seawater ranges from about 1020 to 1029 kg/m3, depending on the temperature, at a temperature of 25 °C, salinity of 35 g/kg and 1 atm pressure, the density of seawater is 1023.6 kg/m3. Deep in the ocean, under pressure, seawater can reach a density of 1050 kg/m3 or higher. The density of seawater also changes with salinity, brines generated by seawater desalination plants can have salinities up to 120 g/kg. The density of typical seawater brine of 120 g/kg salinity at 25 °C, seawater pH is limited to the range 7.5 to 8.4. The speed of sound in seawater is about 1,500 m/s, and varies with temperature, salinity. The thermal conductivity of seawater is 0.6 W/mK at 25 °C, the thermal conductivity decreases with increasing salinity and increases with increasing temperature. Seawater contains more dissolved ions than all types of freshwater, however, the ratios of solutes differ dramatically. Bicarbonate ions also constitute 48% of river water solutes but only 0. 14% of all seawater ions, differences like these are due to the varying residence times of seawater solutes, sodium and chlorine have very long residence times, while calcium tends to precipitate much more quickly. The most abundant dissolved ions in seawater are sodium, chloride, magnesium, sulfate and its osmolarity is about 1000 mOsm/l

12.
Ocean
–
An ocean is a body of saline water that composes much of a planets hydrosphere. On Earth, an ocean is one of the major divisions of the World Ocean. These are, in descending order by area, the Pacific, Atlantic, Indian, Southern, the word sea is often used interchangeably with ocean in American English but, strictly speaking, a sea is a body of saline water partly or fully enclosed by land. The ocean contains 97% of Earths water, and oceanographers have stated that less than 5% of the World Ocean has been explored, the total volume is approximately 1.35 billion cubic kilometers with an average depth of nearly 3,700 meters. As the world ocean is the component of Earths hydrosphere, it is integral to all known life, forms part of the carbon cycle. The world ocean is the habitat of 230,000 known species, but because much of it is unexplored, the origin of Earths oceans remains unknown, oceans are thought to have formed in the Hadean period and may have been the impetus for the emergence of life. Extraterrestrial oceans may be composed of water or other elements and compounds, the only confirmed large stable bodies of extraterrestrial surface liquids are the lakes of Titan, although there is evidence for the existence of oceans elsewhere in the Solar System. Early in their histories, Mars and Venus are theorized to have had large water oceans. The Mars ocean hypothesis suggests that nearly a third of the surface of Mars was once covered by water, compounds such as salts and ammonia dissolved in water lower its freezing point so that water might exist in large quantities in extraterrestrial environments as brine or convecting ice. Unconfirmed oceans are speculated beneath the surface of many planets and natural satellites, notably. The Solar Systems giant planets are thought to have liquid atmospheric layers of yet to be confirmed compositions. Oceans may also exist on exoplanets and exomoons, including surface oceans of water within a circumstellar habitable zone. Ocean planets are a type of planet with a surface completely covered with liquid. The concept of Ōkeanós has an Indo-European connection, Greek Ōkeanós has been compared to the Vedic epithet ā-śáyāna-, predicated of the dragon Vṛtra-, who captured the cows/rivers. Related to this notion, the Okeanos is represented with a dragon-tail on some early Greek vases, though generally described as several separate oceans, these waters comprise one global, interconnected body of salt water sometimes referred to as the World Ocean or global ocean. This concept of a body of water with relatively free interchange among its parts is of fundamental importance to oceanography. The major oceanic divisions – listed below in descending order of area and volume – are defined in part by the continents, various archipelagos, Oceans are fringed by smaller, adjoining bodies of water such as seas, gulfs, bays, bights, and straits. The Mid-Oceanic Ridge of the World are connected and form the Ocean Ridge, the continuous mountain range is 65,000 km long, and the total length of the oceanic ridge system is 80,000 km long

13.
Litre
–
The litre or liter is an SI accepted metric system unit of volume equal to 1 cubic decimetre,1,000 cubic centimetres or 1/1,000 cubic metre. A cubic decimetre occupies a volume of 10×10×10 centimetres and is equal to one-thousandth of a cubic metre. The original French metric system used the litre as a base unit. The word litre is derived from an older French unit, the litron, whose name came from Greek — where it was a unit of weight, not volume — via Latin, and which equalled approximately 0.831 litres. The litre was also used in subsequent versions of the metric system and is accepted for use with the SI. The spelling used by the International Bureau of Weights and Measures is litre, the less common spelling of liter is more predominantly used in American English. One litre of water has a mass of almost exactly one kilogram. Subsequent redefinitions of the metre and kilogram mean that this relationship is no longer exact, a litre is defined as a special name for a cubic decimetre or 10 centimetres ×10 centimetres ×10 centimetres. Hence 1 L ≡0.001 m3 ≡1000 cm3, from 1901 to 1964, the litre was defined as the volume of one kilogram of pure water at maximum density and standard pressure. The kilogram was in turn specified as the mass of a platinum/iridium cylinder held at Sèvres in France and was intended to be of the mass as the 1 litre of water referred to above. It was subsequently discovered that the cylinder was around 28 parts per million too large and thus, during this time, additionally, the mass-volume relationship of water depends on temperature, pressure, purity and isotopic uniformity. In 1964, the definition relating the litre to mass was abandoned in favour of the current one, although the litre is not an official SI unit, it is accepted by the CGPM for use with the SI. CGPM defines the litre and its acceptable symbols, a litre is equal in volume to the millistere, an obsolete non-SI metric unit customarily used for dry measure. The litre is often used in some calculated measurements, such as density. One litre of water has a mass of almost exactly one kilogram when measured at its maximal density, similarly,1 millilitre of water has a mass of about 1 g,1,000 litres of water has a mass of about 1,000 kg. It is now known that density of water depends on the isotopic ratios of the oxygen and hydrogen atoms in a particular sample. The litre, though not an official SI unit, may be used with SI prefixes, the most commonly used derived unit is the millilitre, defined as one-thousandth of a litre, and also often referred to by the SI derived unit name cubic centimetre. It is a commonly used measure, especially in medicine and cooking, Other units may be found in the table below, where the more often used terms are in bold

14.
Avogadro constant
–
In chemistry and physics, the Avogadro constant is the number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. Thus, it is the proportionality factor that relates the mass of a compound to the mass of a sample. Avogadros constant, often designated with the symbol NA or L, has the value 7023602214085700000♠6. 022140857×1023 mol−1 in the International System of Units and this number is also known as Loschmidt constant in German literature. The constant was later redefined as the number of atoms in 12 grams of the isotope carbon-12, for instance, to a first approximation,1 gram of hydrogen element, having the atomic number 1, has 7023602200000000000♠6. 022×1023 hydrogen atoms. Similarly,12 grams of 12C, with the mass number 12, has the number of carbon atoms. Avogadros number is a quantity, and has the same numerical value of the Avogadro constant given in base units. In contrast, the Avogadro constant has the dimension of reciprocal amount of substance, the Avogadro constant can also be expressed as 0.602214. ML mol−1 Å−3, which can be used to convert from volume per molecule in cubic ångströms to molar volume in millilitres per mole, revisions in the base set of SI units necessitated redefinitions of the concepts of chemical quantity. Avogadros number, and its definition, was deprecated in favor of the Avogadro constant, the French physicist Jean Perrin in 1909 proposed naming the constant in honor of Avogadro. Perrin won the 1926 Nobel Prize in Physics, largely for his work in determining the Avogadro constant by several different methods, accurate determinations of Avogadros number require the measurement of a single quantity on both the atomic and macroscopic scales using the same unit of measurement. This became possible for the first time when American physicist Robert Millikan measured the charge on an electron in 1910, the electric charge per mole of electrons is a constant called the Faraday constant and had been known since 1834 when Michael Faraday published his works on electrolysis. By dividing the charge on a mole of electrons by the charge on a single electron the value of Avogadros number is obtained, since 1910, newer calculations have more accurately determined the values for the Faraday constant and the elementary charge. Perrin originally proposed the name Avogadros number to refer to the number of molecules in one gram-molecule of oxygen, with this recognition, the Avogadro constant was no longer a pure number, but had a unit of measurement, the reciprocal mole. While it is rare to use units of amount of other than the mole, the Avogadro constant can also be expressed in units such as the pound mole. NA = 7026273159734000000♠2. 73159734×1026 −1 = 7025170724843400000♠1. 707248434×1025 −1 Avogadros constant is a factor between macroscopic and microscopic observations of nature. As such, it provides the relationship between other physical constants and properties. The Avogadro constant also enters into the definition of the atomic mass unit. The earliest accurate method to measure the value of the Avogadro constant was based on coulometry

15.
Milky Way
–
The Milky Way is the galaxy that contains our Solar System. The descriptive milky is derived from the appearance from Earth of the galaxy – a band of light seen in the night sky formed from stars that cannot be distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within. Galileo Galilei first resolved the band of light into individual stars with his telescope in 1610, until the early 1920s, most astronomers thought that the Milky Way contained all the stars in the Universe. Following the 1920 Great Debate between the astronomers Harlow Shapley and Heber Curtis, observations by Edwin Hubble showed that the Milky Way is just one of many galaxies, the Milky Way is a barred spiral galaxy with a diameter between 100,000 light-years and 180,000 light-years. The Milky Way is estimated to contain 100–400 billion stars, there are probably at least 100 billion planets in the Milky Way. The Solar System is located within the disk, about 26,000 light-years from the Galactic Center, on the edge of one of the spiral-shaped concentrations of gas. The stars in the inner ≈10,000 light-years form a bulge, the very center is marked by an intense radio source, named Sagittarius A*, which is likely to be a supermassive black hole. Stars and gases at a range of distances from the Galactic Center orbit at approximately 220 kilometers per second. The constant rotation speed contradicts the laws of Keplerian dynamics and suggests much of the mass of the Milky Way does not emit or absorb electromagnetic radiation. This mass has been termed dark matter, the rotational period is about 240 million years at the position of the Sun. The Milky Way as a whole is moving at a velocity of approximately 600 km per second with respect to frames of reference. The oldest stars in the Milky Way are nearly as old as the Universe itself, the Milky Way has several satellite galaxies and is part of the Local Group of galaxies, which is a component of the Virgo Supercluster, which is itself a component of the Laniakea Supercluster. The Milky Way can be seen as a band of white light some 30 degrees wide arcing across the sky. Dark regions within the band, such as the Great Rift, the area of the sky obscured by the Milky Way is called the Zone of Avoidance. The Milky Way has a low surface brightness. Its visibility can be reduced by background light such as light pollution or stray light from the Moon. The sky needs to be darker than about 20.2 magnitude per square arcsecond in order for the Milky Way to be seen and it should be visible when the limiting magnitude is approximately +5.1 or better and shows a great deal of detail at +6.1

16.
Binary prefix
–
A binary prefix is a unit prefix for multiples of units in data processing, data transmission, and digital information, notably the bit and the byte, to indicate multiplication by a power of 2. The computer industry has used the units kilobyte, megabyte, and gigabyte, and the corresponding symbols KB, MB. In citations of main memory capacity, gigabyte customarily means 1073741824 bytes, as this is the third power of 1024, and 1024 is a power of two, this usage is referred to as a binary measurement. In most other contexts, the uses the multipliers kilo, mega, giga, etc. in a manner consistent with their meaning in the International System of Units. For example, a 500 gigabyte hard disk holds 500000000000 bytes, in contrast with the binary prefix usage, this use is described as a decimal prefix, as 1000 is a power of 10. The use of the same unit prefixes with two different meanings has caused confusion, in 2008, the IEC prefixes were incorporated into the ISO/IEC80000 standard. Early computers used one of two addressing methods to access the memory, binary or decimal. For example, the IBM701 used binary and could address 2048 words of 36 bits each, while the IBM702 used decimal, by the mid-1960s, binary addressing had become the standard architecture in most computer designs, and main memory sizes were most commonly powers of two. Early computer system documentation would specify the size with an exact number such as 4096,8192. These are all powers of two, and furthermore are small multiples of 210, or 1024, as storage capacities increased, several different methods were developed to abbreviate these quantities. The method most commonly used today uses prefixes such as kilo, mega, giga, and corresponding symbols K, M, and G, the prefixes kilo- and mega-, meaning 1000 and 1000000 respectively, were commonly used in the electronics industry before World War II. Along with giga- or G-, meaning 1000000000, they are now known as SI prefixes after the International System of Units, introduced in 1960 to formalize aspects of the metric system. The International System of Units does not define units for digital information and this usage is not consistent with the SI. Compliance with the SI requires that the prefixes take their 1000-based meaning, the use of K in the binary sense as in a 32K core meaning 32 ×1024 words, i. e.32768 words, can be found as early as 1959. Gene Amdahls seminal 1964 article on IBM System/360 used 1K to mean 1024 and this style was used by other computer vendors, the CDC7600 System Description made extensive use of K as 1024. Thus the first binary prefix was born, the exact values 32768 words,65536 words and 131072 words would then be described as 32K, 65K and 131K. This style was used from about 1965 to 1975 and these two styles were used loosely around the same time, sometimes by the same company. In discussions of binary-addressed memories, the size was evident from context

17.
Decimal
–
This article aims to be an accessible introduction. For the mathematical definition, see Decimal representation, the decimal numeral system has ten as its base, which, in decimal, is written 10, as is the base in every positional numeral system. It is the base most widely used by modern civilizations. Decimal fractions have terminating decimal representations and other fractions have repeating decimal representations, Decimal notation is the writing of numbers in a base-ten numeral system. Examples are Brahmi numerals, Greek numerals, Hebrew numerals, Roman numerals, Roman numerals have symbols for the decimal powers and secondary symbols for half these values. Brahmi numerals have symbols for the nine numbers 1–9, the nine decades 10–90, plus a symbol for 100, Chinese numerals have symbols for 1–9, and additional symbols for powers of ten, which in modern usage reach 1072. Positional decimal systems include a zero and use symbols for the ten values to represent any number, positional notation uses positions for each power of ten, units, tens, hundreds, thousands, etc. The position of each digit within a number denotes the multiplier multiplied with that position has a value ten times that of the position to its right. There were at least two independent sources of positional decimal systems in ancient civilization, the Chinese counting rod system. Ten is the number which is the count of fingers and thumbs on both hands, the English word digit as well as its translation in many languages is also the anatomical term for fingers and toes. In English, decimal means tenth, decimate means reduce by a tenth, however, the symbols used in different areas are not identical, for instance, Western Arabic numerals differ from the forms used by other Arab cultures. A decimal fraction is a fraction the denominator of which is a power of ten. g, Decimal fractions 8/10, 1489/100, 24/100000, and 58900/10000 are expressed in decimal notation as 0.8,14.89,0.00024,5.8900 respectively. In English-speaking, some Latin American and many Asian countries, a period or raised period is used as the separator, in many other countries, particularly in Europe. The integer part, or integral part of a number is the part to the left of the decimal separator. The part from the separator to the right is the fractional part. It is usual for a number that consists only of a fractional part to have a leading zero in its notation. Any rational number with a denominator whose only prime factors are 2 and/or 5 may be expressed as a decimal fraction and has a finite decimal expansion. 1/2 =0.5 1/20 =0.05 1/5 =0.2 1/50 =0.02 1/4 =0.25 1/40 =0.025 1/25 =0.04 1/8 =0.125 1/125 =0.008 1/10 =0

18.
Long and short scales
–
Thus, billion means a million millions, trillion means a million billions, and so on. Short scale Every new term greater than million is one thousand times larger than the previous term, thus, billion means a thousand millions, trillion means a thousand billions, and so on. For whole numbers less than a million the two scales are identical. From a thousand million up the two scales diverge, using the words for different numbers, this can cause misunderstanding. Countries where the scale is currently used include most countries in continental Europe and most French-speaking, Spanish-speaking. The short scale is now used in most English-speaking and Arabic-speaking countries, in Brazil, in former Soviet Union, number names are rendered in the language of the country, but are similar everywhere due to shared etymology. Some languages, particularly in East Asia and South Asia, have large number naming systems that are different from both the long and short scales, for example the Indian numbering system. After several decades of increasing informal British usage of the scale, in 1974 the government of the UK adopted it. With very few exceptions, the British usage and American usage are now identical, the first recorded use of the terms short scale and long scale was by the French mathematician Geneviève Guitel in 1975. At and above a million the same names are used to refer to numbers differing by a factor of an integer power of 1,000. Each scale has a justification to explain the use of each such differing numerical name. The short-scale logic is based on powers of one thousand, whereas the long-scale logic is based on powers of one million, in both scales, the prefix bi- refers to 2 and tri- refers to 3, etc. However only in the scale do the prefixes beyond one million indicate the actual power or exponent. In the short scale, the prefixes refer to one less than the exponent, the word, million, derives from the Old French, milion, from the earlier Old Italian, milione, an intensification of the Latin word, mille, a thousand. That is, a million is a big thousand, much as a great gross is a dozen gross or 12×144 =1728, the word, milliard, or its translation, is found in many European languages and is used in those languages for 109. However, it is unknown in American English, which uses billion, and not used in British English, which preferred to use thousand million before the current usage of billion. The financial term, yard, which derives from milliard, is used on financial markets, as, unlike the term, billion, it is internationally unambiguous and phonetically distinct from million. Likewise, many long scale use the word billiard for one thousand long scale billions

19.
Long scale
–
Thus, billion means a million millions, trillion means a million billions, and so on. Short scale Every new term greater than million is one thousand times larger than the previous term, thus, billion means a thousand millions, trillion means a thousand billions, and so on. For whole numbers less than a million the two scales are identical. From a thousand million up the two scales diverge, using the words for different numbers, this can cause misunderstanding. Countries where the scale is currently used include most countries in continental Europe and most French-speaking, Spanish-speaking. The short scale is now used in most English-speaking and Arabic-speaking countries, in Brazil, in former Soviet Union, number names are rendered in the language of the country, but are similar everywhere due to shared etymology. Some languages, particularly in East Asia and South Asia, have large number naming systems that are different from both the long and short scales, for example the Indian numbering system. After several decades of increasing informal British usage of the scale, in 1974 the government of the UK adopted it. With very few exceptions, the British usage and American usage are now identical, the first recorded use of the terms short scale and long scale was by the French mathematician Geneviève Guitel in 1975. At and above a million the same names are used to refer to numbers differing by a factor of an integer power of 1,000. Each scale has a justification to explain the use of each such differing numerical name. The short-scale logic is based on powers of one thousand, whereas the long-scale logic is based on powers of one million, in both scales, the prefix bi- refers to 2 and tri- refers to 3, etc. However only in the scale do the prefixes beyond one million indicate the actual power or exponent. In the short scale, the prefixes refer to one less than the exponent, the word, million, derives from the Old French, milion, from the earlier Old Italian, milione, an intensification of the Latin word, mille, a thousand. That is, a million is a big thousand, much as a great gross is a dozen gross or 12×144 =1728, the word, milliard, or its translation, is found in many European languages and is used in those languages for 109. However, it is unknown in American English, which uses billion, and not used in British English, which preferred to use thousand million before the current usage of billion. The financial term, yard, which derives from milliard, is used on financial markets, as, unlike the term, billion, it is internationally unambiguous and phonetically distinct from million. Likewise, many long scale use the word billiard for one thousand long scale billions

20.
1,000,000,000
–
1,000,000,000 is the natural number following 999,999,999 and preceding 1,000,000,001. One billion can also be written as b or bn, in scientific notation, it is written as 1 ×109. The SI prefix giga indicates 1,000,000,000 times the base unit, one billion years may be called eon in astronomy and geology. Previously in British English, the word billion referred exclusively to a million millions, however, this is no longer as common as earlier, and the word has been used to mean one thousand million for some time. The alternative term one thousand million is used in the U. K. or countries such as Spain that uses one thousand million as one million million constitutes a billion. The worded figure, as opposed to the figure is used to differentiate between one thousand million or one billion. The term milliard can also be used to refer to 1,000,000,000, whereas milliard is seldom used in English, in the South Asian numbering system, it is known as 100 crore or 1 Arab. 1000000007 – smallest prime number with 10 digits,1023456789 – smallest pandigital number in base 10. 1026753849 – smallest pandigital square that includes 0,1073741824 –2301073807359 – 14th Kynea number. 1162261467 –3191220703125 –513 1232922769- 35113^2 Centered hexagonal number,1234567890 – pandigital number with the digits in order. 1882341361 – The least prime whose reversal is both square and triangular,1977326743 –7112147483647 – 8th Mersenne prime and the largest signed 32-bit integer. 2147483648 –2312176782336 –6122214502422 – 6th primary pseudoperfect number,2357947691 –1192971215073 – 11th Fibonacci prime. 3405691582 – hexadecimal CAFEBABE, used as a placeholder in programming,3405697037 – hexadecimal CAFED00D, used as a placeholder in programming. 3735928559 – hexadecimal DEADBEEF, used as a placeholder in programming,3486784401 –3204294836223 – 16th Carol number. 4294967291 – Largest prime 32-bit unsigned integer,4294967295 – Maximum 32-bit unsigned integer, perfect totient number, product of the five prime Fermat numbers. 4294967296 –2324294967297 – the first composite Fermat number,6103515625 –5146210001000 – only self-descriptive number in base 10. 6975757441 –1786983776800 – 15th colossally abundant number, 15th superior highly composite number 7645370045 – 27th Pell number,8589934592 –2339043402501 – 25th Motzkin number. 9814072356 – largest square pandigital number, largest pandigital pure power,9876543210 – largest number without redundant digits

21.
1,000,000
–
One million or one thousand thousand is the natural number following 999,999 and preceding 1,000,001. The word is derived from the early Italian millione, from mille, thousand and it is commonly abbreviated as m or M, further MM, mm, or mn in financial contexts. In scientific notation, it is written as 1×106 or 106, physical quantities can also be expressed using the SI prefix mega, when dealing with SI units, for example,1 megawatt equals 1,000,000 watts. The meaning of the word million is common to the scale and long scale numbering systems, unlike the larger numbers. Information, Not counting spaces, the text printed on 136 pages of an Encyclopædia Britannica, length, There are one million millimeters in a kilometer, and roughly a million sixteenths of an inch in a mile. A typical car tire might rotate a million times in a 1, 200-mile trip, fingers, If the width of a human finger is 2.2 cm, then a million fingers lined up would cover a distance of 22 km. If a person walks at a speed of 4 km/h, it would take approximately five. A city lot 70 by 100 feet is about a million square inches, volume, The cube root of one million is only one hundred, so a million objects or cubic units is contained in a cube only a hundred objects or linear units on a side. A million grains of salt or granulated sugar occupies only about 64 ml. One million cubic inches would be the volume of a room only 8 1⁄3 feet long by 8 1⁄3 feet wide by 8 1⁄3 feet high. Mass, A million cubic millimeters of water would have a volume of one litre, a million millilitres or cubic centimetres of water has a mass of a million grams or one tonne. Weight, A million 80-milligram honey bees would weigh the same as an 80 kg person, landscape, A pyramidal hill 600 feet wide at the base and 100 feet high would weigh about a million tons. Computer, A display resolution of 1,280 by 800 pixels contains 1,024,000 pixels, money, A USD bill of any denomination weighs 1 gram. There are 454 grams in a pound, one million $1 bills would weigh 2,204.62 pounds, or just over 1 ton. Time, A million seconds is 11.57 days, in Indian English and Pakistani English, it is also expressed as 10 lakh or 10 Lac. Lakh is derived from laksh for 100,000 in Sanskrit

22.
100 (number)
–
100 or one hundred is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the hundred or five score in order to differentiate the English. The standard SI prefix for a hundred is hecto-,100 is the basis of percentages, with 100% being a full amount. 100 is the sum of the first nine prime numbers, as well as the sum of pairs of prime numbers e. g.3 +97,11 +89,17 +83,29 +71,41 +59. 100 is the sum of the cubes of the first four integers and this is related by Nicomachuss theorem to the fact that 100 also equals the square of the sum of the first four integers,100 =102 =2. 26 +62 =100, thus 100 is a Leyland number and it is divisible by the number of primes below it,25 in this case. It can not be expressed as the difference between any integer and the total of coprimes below it, making it a noncototient and it can be expressed as a sum of some of its divisors, making it a semiperfect number. 100 is a Harshad number in base 10, and also in base 4, there are exactly 100 prime numbers whose digits are in strictly ascending order. 100 is the smallest number whose common logarithm is a prime number,100 senators are in the U. S One hundred is the atomic number of fermium, an actinide. On the Celsius scale,100 degrees is the temperature of pure water at sea level. The Kármán line lies at an altitude of 100 kilometres above the Earths sea level and is used to define the boundary between Earths atmosphere and outer space. There are 100 blasts of the Shofar heard in the service of Rosh Hashana, a religious Jew is expected to utter at least 100 blessings daily. In Hindu Religion - Mythology Book Mahabharata - Dhritarashtra had 100 sons known as kauravas, the United States Senate has 100 Senators. Most of the currencies are divided into 100 subunits, for example, one euro is one hundred cents. The 100 Euro banknotes feature a picture of a Rococo gateway on the obverse, the U. S. hundred-dollar bill has Benjamin Franklins portrait, the Benjamin is the largest U. S. bill in print. American savings bonds of $100 have Thomas Jeffersons portrait, while American $100 treasury bonds have Andrew Jacksons portrait, One hundred is also, The number of years in a century. The number of pounds in an American short hundredweight, in Greece, India, Israel and Nepal,100 is the police telephone number. In Belgium,100 is the ambulance and firefighter telephone number, in United Kingdom,100 is the operator telephone number

23.
10 (number)
–
10 is an even natural number following 9 and preceding 11. Ten is the base of the numeral system, by far the most common system of denoting numbers in both spoken and written language. The reason for the choice of ten is assumed to be that humans have ten fingers, a collection of ten items is called a decade. The ordinal adjective is decimal, the adjective is denary. Increasing a quantity by one order of magnitude is most widely understood to mean multiplying the quantity by ten, to reduce something by one tenth is to decimate. A theoretical highest number in topics that require a rating, by contrast having 0 or 1 as the lowest number, Ten is a composite number, its proper divisors being 1,2 and 5. Ten is the smallest noncototient, a number that cannot be expressed as the difference between any integer and the number of coprimes below it. Ten is the discrete semiprime and the second member of the discrete semiprime family. Ten has an aliquot sum σ of 8 and is accordingly the first discrete semiprime to be in deficit, all subsequent discrete semiprimes are in deficit. The aliquot sequence for 10 comprises five members with this number being the second member of the 7-aliquot tree. Ten is the smallest semiprime that is the sum of all the prime numbers from its lower factor through its higher factor Only three other small semiprimes share this attribute. It is the sum of only one number the discrete semiprime 14. Ten is the sum of the first three numbers, of the four first numbers, of the square of the two first odd numbers and also of the first four factorials. Ten is the eighth Perrin number, preceded in the sequence by 5,5,7, a polygon with ten sides is a decagon, and 10 is a decagonal number. Because 10 is the product of a power of 2 with nothing but distinct Fermat primes, Ten is also a triangular number, a centered triangular number, and a tetrahedral number. Ten is the number of n queens problem solutions for n =5, Ten is the smallest number whose status as a possible friendly number is unknown. As is the case for any base in its system, ten is the first two-digit number in decimal, any integer written in the decimal system can be multiplied by ten by adding a zero to the end. The Roman numeral for ten is X, it is thought that the V for five is derived from an open hand, incidentally, the Chinese word numeral for ten, is also a cross, 十

24.
1 (number)
–
1, is a number, a numeral, and the name of the glyph representing that number. It represents a single entity, the unit of counting or measurement, for example, a line segment of unit length is a line segment of length 1. It is also the first of the series of natural numbers. The word one can be used as a noun, an adjective and it comes from the English word an, which comes from the Proto-Germanic root *ainaz. The Proto-Germanic root *ainaz comes from the Proto-Indo-European root *oi-no-, compare the Proto-Germanic root *ainaz to Old Frisian an, Gothic ains, Danish een, Dutch een, German eins and Old Norse einn. Compare the Proto-Indo-European root *oi-no- to Greek oinos, Latin unus, Old Persian aivam, Old Church Slavonic -inu and ino-, Lithuanian vienas, Old Irish oin, One, sometimes referred to as unity, is the first non-zero natural number. It is thus the integer before two and after zero, and the first positive odd number, any number multiplied by one is that number, as one is the identity for multiplication. As a result,1 is its own factorial, its own square, its own cube, One is also the result of the empty product, as any number multiplied by one is itself. It is also the natural number that is neither composite nor prime with respect to division. The Gupta wrote it as a line, and the Nagari sometimes added a small circle on the left. The Nepali also rotated it to the right but kept the circle small and this eventually became the top serif in the modern numeral, but the occasional short horizontal line at the bottom probably originates from similarity with the Roman numeral I. Where the 1 is written with an upstroke, the number 7 has a horizontal stroke through the vertical line. While the shape of the 1 character has an ascender in most modern typefaces, in typefaces with text figures, many older typewriters do not have a separate symbol for 1 and use the lowercase letter l instead. It is possible to find cases when the uppercase J is used,1 cannot be used as the base of a positional numeral system, as the only digit that would be permitted in such a system would be 0. Since the base 1 exponential function always equals 1, its inverse does not exist, there are two ways to write the real number 1 as a recurring decimal, as 1.000. and as 0.999. There is only one way to represent the real number 1 as a Dedekind cut, in a multiplicative group or monoid, the identity element is sometimes denoted 1, but e is also traditional. However,1 is especially common for the identity of a ring. When such a ring has characteristic n not equal to 0,1 is the first figurate number of every kind, such as triangular number, pentagonal number and centered hexagonal number, to name just a few