1.
Oxide minerals
–
The oxide mineral class includes those minerals in which the oxide anion is bonded to one or more metal ions. The hydroxide bearing minerals are typically included in the oxide class, the minerals with complex anion groups such as the silicates, sulfates, carbonates and phosphates are classed separately. This list uses it to modify the Classification of Nickel–Strunz,00 Clinobirnessite*,00 Kleberite*,00 Chubutite*,00 Struverite

2.
Chemical formula
–
These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a name, and it contains no words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulas can fully specify the structure of only the simplest of molecules and chemical substances, the simplest types of chemical formulas are called empirical formulas, which use letters and numbers indicating the numerical proportions of atoms of each type. Molecular formulas indicate the numbers of each type of atom in a molecule. For example, the formula for glucose is CH2O, while its molecular formula is C6H12O6. This is possible if the relevant bonding is easy to show in one dimension, an example is the condensed molecular/chemical formula for ethanol, which is CH3-CH2-OH or CH3CH2OH. For reasons of structural complexity, there is no condensed chemical formula that specifies glucose, chemical formulas may be used in chemical equations to describe chemical reactions and other chemical transformations, such as the dissolving of ionic compounds into solution. A chemical formula identifies each constituent element by its chemical symbol, in empirical formulas, these proportions begin with a key element and then assign numbers of atoms of the other elements in the compound, as ratios to the key element. For molecular compounds, these numbers can all be expressed as whole numbers. For example, the formula of ethanol may be written C2H6O because the molecules of ethanol all contain two carbon atoms, six hydrogen atoms, and one oxygen atom. Some types of compounds, however, cannot be written with entirely whole-number empirical formulas. An example is boron carbide, whose formula of CBn is a variable non-whole number ratio with n ranging from over 4 to more than 6.5. When the chemical compound of the consists of simple molecules. These types of formulas are known as molecular formulas and condensed formulas. A molecular formula enumerates the number of atoms to reflect those in the molecule, so that the formula for glucose is C6H12O6 rather than the glucose empirical formula. However, except for very simple substances, molecular chemical formulas lack needed structural information, for simple molecules, a condensed formula is a type of chemical formula that may fully imply a correct structural formula. For example, ethanol may be represented by the chemical formula CH3CH2OH

3.
Crystal system
–
In crystallography, the terms crystal system, crystal family and lattice system each refer to one of several classes of space groups, lattices, point groups or crystals. Informally, two crystals are in the crystal system if they have similar symmetries, though there are many exceptions to this. Space groups and crystals are divided into seven crystal systems according to their point groups, five of the crystal systems are essentially the same as five of the lattice systems, but the hexagonal and trigonal crystal systems differ from the hexagonal and rhombohedral lattice systems. The six crystal families are formed by combining the hexagonal and trigonal crystal systems into one hexagonal family, a lattice system is a class of lattices with the same set of lattice point groups, which are subgroups of the arithmetic crystal classes. The 14 Bravais lattices are grouped into seven lattice systems, triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal, in a crystal system, a set of point groups and their corresponding space groups are assigned to a lattice system. Of the 32 point groups that exist in three dimensions, most are assigned to only one system, in which case both the crystal and lattice systems have the same name. However, five point groups are assigned to two systems, rhombohedral and hexagonal, because both exhibit threefold rotational symmetry. These point groups are assigned to the crystal system. In total there are seven crystal systems, triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, a crystal family is determined by lattices and point groups. It is formed by combining crystal systems which have space groups assigned to a lattice system. In three dimensions, the families and systems are identical, except the hexagonal and trigonal crystal systems. In total there are six families, triclinic, monoclinic, orthorhombic, tetragonal, hexagonal. Spaces with less than three dimensions have the number of crystal systems, crystal families and lattice systems. In one-dimensional space, there is one crystal system, in 2D space, there are four crystal systems, oblique, rectangular, square and hexagonal. The relation between three-dimensional crystal families, crystal systems and lattice systems is shown in the table, Note. To avoid confusion of terminology, the term trigonal lattice is not used, if the original structure and inverted structure are identical, then the structure is centrosymmetric. Still, even for non-centrosymmetric case, inverted structure in some cases can be rotated to align with the original structure and this is the case of non-centrosymmetric achiral structure. If the inverted structure cannot be rotated to align with the structure, then the structure is chiral

4.
Monoclinic crystal system
–
In crystallography, the monoclinic crystal system is one of the 7 crystal systems. A crystal system is described by three vectors, in the monoclinic system, the crystal is described by vectors of unequal lengths, as in the orthorhombic system. They form a rectangular prism with a parallelogram as its base, hence two vectors are perpendicular, while the third vector meets the other two at an angle other than 90°. There is only one monoclinic Bravais lattice in two dimensions, the oblique lattice, two monoclinic Bravais lattices exist, the primitive monoclinic and the centered monoclinic lattices. In this axis setting, the primitive and base-centered lattices interchange in centering type, sphenoidal is also monoclinic hemimorphic, Domatic is also monoclinic hemihedral, Prismatic is also monoclinic normal. Crystal structure Hurlbut, Cornelius S. Klein, Cornelis, hahn, Theo, ed. International Tables for Crystallography, Volume A, Space Group Symmetry

5.
Orthorhombic crystal system
–
In crystallography, the orthorhombic crystal system is one of the 7 crystal systems. All three bases intersect at 90° angles, so the three lattice vectors remain mutually orthogonal, there are two orthorhombic Bravais lattices in two dimensions, Primitive rectangular and centered rectangular. The primitive rectangular lattice can also be described by a centered rhombic unit cell, there are four orthorhombic Bravais lattices, primitive orthorhombic, base-centered orthorhombic, body-centered orthorhombic, and face-centered orthorhombic. In this axis setting, the primitive and base-centered lattices interchange in centering type, crystal structure Overview of all space groups Hurlbut, Cornelius S. Klein, Cornelis. Hahn, Theo, ed. International Tables for Crystallography, Volume A, Space Group Symmetry