1.
Circle
–
A circle is a simple closed shape in Euclidean geometry. The distance between any of the points and the centre is called the radius, a circle is a simple closed curve which divides the plane into two regions, an interior and an exterior. Annulus, the object, the region bounded by two concentric circles. Arc, any connected part of the circle, centre, the point equidistant from the points on the circle. Chord, a segment whose endpoints lie on the circle. Circumference, the length of one circuit along the circle, or the distance around the circle and it is a special case of a chord, namely the longest chord, and it is twice the radius. Disc, the region of the bounded by a circle. Lens, the intersection of two discs, passant, a coplanar straight line that does not touch the circle. Radius, a line segment joining the centre of the circle to any point on the circle itself, or the length of such a segment, sector, a region bounded by two radii and an arc lying between the radii. Segment, a region, not containing the centre, bounded by a chord, secant, an extended chord, a coplanar straight line cutting the circle at two points. Semicircle, an arc that extends from one of a diameters endpoints to the other, in non-technical common usage it may mean the diameter, arc, and its interior, a two dimensional region, that is technically called a half-disc. A half-disc is a case of a segment, namely the largest one. Tangent, a straight line that touches the circle at a single point. The word circle derives from the Greek κίρκος/κύκλος, itself a metathesis of the Homeric Greek κρίκος, the origins of the words circus and circuit are closely related. The circle has been known since before the beginning of recorded history, natural circles would have been observed, such as the Moon, Sun, and a short plant stalk blowing in the wind on sand, which forms a circle shape in the sand. The circle is the basis for the wheel, which, with related inventions such as gears, in mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus. Some highlights in the history of the circle are,1700 BCE – The Rhind papyrus gives a method to find the area of a circular field. The result corresponds to 256/81 as a value of π.300 BCE – Book 3 of Euclids Elements deals with the properties of circles

2.
Electrical engineering
–
Electrical engineering is a field of engineering that generally deals with the study and application of electricity, electronics, and electromagnetism. This field first became an occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone. Subsequently, broadcasting and recording media made electronics part of daily life, the invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object. Electrical engineers typically hold a degree in engineering or electronic engineering. Practicing engineers may have professional certification and be members of a professional body, such bodies include the Institute of Electrical and Electronics Engineers and the Institution of Engineering and Technology. Electrical engineers work in a wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager, the tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software. Electricity has been a subject of scientific interest since at least the early 17th century and he also designed the versorium, a device that detected the presence of statically charged objects. In the 19th century, research into the subject started to intensify, Electrical engineering became a profession in the later 19th century. Practitioners had created an electric telegraph network and the first professional electrical engineering institutions were founded in the UK. Over 50 years later, he joined the new Society of Telegraph Engineers where he was regarded by other members as the first of their cohort, Practical applications and advances in such fields created an increasing need for standardised units of measure. They led to the standardization of the units volt, ampere, coulomb, ohm, farad. This was achieved at a conference in Chicago in 1893. During these years, the study of electricity was considered to be a subfield of physics. Thats because early electrical technology was electromechanical in nature, the Technische Universität Darmstadt founded the worlds first department of electrical engineering in 1882. The first course in engineering was taught in 1883 in Cornell’s Sibley College of Mechanical Engineering. It was not until about 1885 that Cornell President Andrew Dickson White established the first Department of Electrical Engineering in the United States, in the same year, University College London founded the first chair of electrical engineering in Great Britain. Professor Mendell P. Weinbach at University of Missouri soon followed suit by establishing the engineering department in 1886

3.
Diode
–
In electronics, a diode is a two-terminal electronic component that conducts primarily in one direction, it has low resistance to the current in one direction, and high resistance in the other. A semiconductor diode, the most common today, is a crystalline piece of semiconductor material with a p–n junction connected to two electrical terminals. A vacuum tube diode has two electrodes, a plate and a heated cathode, semiconductor diodes were the first semiconductor electronic devices. The discovery of crystals rectifying abilities was made by German physicist Ferdinand Braun in 1874, the first semiconductor diodes, called cats whisker diodes, developed around 1906, were made of mineral crystals such as galena. Today, most diodes are made of silicon, but other such as selenium and germanium are sometimes used. The most common function of a diode is to allow a current to pass in one direction. Thus, the diode can be viewed as a version of a check valve. However, diodes can have complicated behavior than this simple on–off action. Semiconductor diodes begin conducting electricity only if a threshold voltage or cut-in voltage is present in the forward direction. The voltage drop across a forward-biased diode varies only a little with the current, and is a function of temperature, a semiconductor diodes current–voltage characteristic can be tailored by selecting the semiconductor materials and the doping impurities introduced into the materials during manufacture. These techniques are used to create special-purpose diodes that perform different functions. Tunnel, Gunn and IMPATT diodes exhibit negative resistance, which is useful in microwave, Diodes, both vacuum and semiconductor, can be used as shot-noise generators. Thermionic diodes and solid state diodes were developed separately, at approximately the time, in the early 1900s. Until the 1950s vacuum tube diodes were used frequently in radios because the early point-contact type semiconductor diodes were less stable. In 1873, Frederick Guthrie discovered the principle of operation of thermionic diodes. Guthrie discovered that a positively charged electroscope could be discharged by bringing a piece of white-hot metal close to it. The same did not apply to a negatively charged electroscope, indicating that the current flow was possible in one direction. Thomas Edison independently rediscovered the principle on February 13,1880, at the time, Edison was investigating why the filaments of his carbon-filament light bulbs nearly always burned out at the positive-connected end

4.
Hyperbola
–
In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other, the hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, each branch of the hyperbola has two arms which become straighter further out from the center of the hyperbola. Diagonally opposite arms, one from each branch, tend in the limit to a common line, called the asymptote of those two arms. So there are two asymptotes, whose intersection is at the center of symmetry of the hyperbola, which can be thought of as the point about which each branch reflects to form the other branch. In the case of the curve f =1 / x the asymptotes are the two coordinate axes, hyperbolas share many of the ellipses analytical properties such as eccentricity, focus, and directrix. Typically the correspondence can be made with nothing more than a change of sign in some term, many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids, hyperboloids, hyperbolic geometry, hyperbolic functions, and gyrovector spaces. The word hyperbola derives from the Greek ὑπερβολή, meaning over-thrown or excessive, hyperbolae were discovered by Menaechmus in his investigations of the problem of doubling the cube, but were then called sections of obtuse cones. The term hyperbola is believed to have coined by Apollonius of Perga in his definitive work on the conic sections. The rectangle could be applied to the segment, be shorter than the segment or exceed the segment, the midpoint M of the line segment joining the foci is called the center of the hyperbola. The line through the foci is called the major axis and it contains the vertices V1, V2, which have distance a to the center. The distance c of the foci to the center is called the distance or linear eccentricity. The quotient c a is the eccentricity e, C2 is called the director circle of the hyperbola. In order to get the branch of the hyperbola, one has to use the director circle related to F1. This property should not be confused with the definition of a hyperbola with help of a directrix below, for an arbitrary point the distance to the focus is 2 + y 2 and to the second focus 2 + y 2. Hence the point is on the hyperbola if the condition is fulfilled 2 + y 2 −2 + y 2 = ±2 a. Remove the square roots by suitable squarings and use the relation b 2 = c 2 − a 2 to obtain the equation of the hyperbola, the shape parameters a, b are called the semi major axis and semi minor axis or conjugate axis. As opposed to an ellipse, a hyperbola has two vertices

5.
Graph of a function
–
In mathematics, the graph of a function f is the collection of all ordered pairs. If the function x is a scalar, the graph is a two-dimensional graph. If the function x is an ordered pair of real numbers, the graph is the collection of all ordered triples. Graphing on a Cartesian plane is referred to as curve sketching. The graph of a function on real numbers may be mapped directly to the representation of the function. The concept of the graph of a function is generalized to the graph of a relation, note that although a function is always identified with its graph, they are not the same because it will happen that two functions with different codomain could have the same graph. For example, the cubic polynomial mentioned below is a surjection if its codomain is the real numbers, to test whether a graph of a curve is a function of x, one uses the vertical line test. To test whether a graph of a curve is a function of y, if the function has an inverse, the graph of the inverse can be found by reflecting the graph of the original function over the line y = x. In science, engineering, technology, finance, and other areas, in the simplest case one variable is plotted as a function of another, typically using rectangular axes, see Plot for details. In the modern foundation of mathematics known as set theory, a function, F = { a, if x =1, d, if x =2, c, if x =3, is. The graph of the polynomial on the real line f = x 3 −9 x is. If this set is plotted on a Cartesian plane, the result is a curve, the graph of the trigonometric function f = sin cos is. If this set is plotted on a three dimensional Cartesian coordinate system, the result is a surface, oftentimes it is helpful to show with the graph, the gradient of the function and several level curves. The level curves can be mapped on the surface or can be projected on the bottom plane. The second figure shows such a drawing of the graph of the function, f = −2 Given a function f of n variables, x 1, …, x n, the normal to the graph is. This is seen by considering the graph as a set of the function g = f − z. The graph of a function is contained in a Cartesian product of sets, fibre bundles arent cartesian products, but appear to be up close. There is a notion of a graph on a fibre bundle called a section

6.
Ellipse
–
In mathematics, an ellipse is a curve in a plane surrounding two focal points such that the sum of the distances to the two focal points is constant for every point on the curve. As such, it is a generalization of a circle, which is a type of an ellipse having both focal points at the same location. The shape of an ellipse is represented by its eccentricity, which for an ellipse can be any number from 0 to arbitrarily close to, ellipses are the closed type of conic section, a plane curve resulting from the intersection of a cone by a plane. Ellipses have many similarities with the two forms of conic sections, parabolas and hyperbolas, both of which are open and unbounded. The cross section of a cylinder is an ellipse, unless the section is parallel to the axis of the cylinder and this ratio is called the eccentricity of the ellipse. Ellipses are common in physics, astronomy and engineering, for example, the orbit of each planet in our solar system is approximately an ellipse with the barycenter of the planet–Sun pair at one of the focal points. The same is true for moons orbiting planets and all other systems having two astronomical bodies, the shapes of planets and stars are often well described by ellipsoids. It is also the simplest Lissajous figure formed when the horizontal and vertical motions are sinusoids with the same frequency, a similar effect leads to elliptical polarization of light in optics. The name, ἔλλειψις, was given by Apollonius of Perga in his Conics, in order to omit the special case of a line segment, one presumes 2 a > | F1 F2 |, E =. The midpoint C of the segment joining the foci is called the center of the ellipse. The line through the foci is called the major axis and it contains the vertices V1, V2, which have distance a to the center. The distance c of the foci to the center is called the distance or linear eccentricity. The quotient c a is the eccentricity e, the case F1 = F2 yields a circle and is included. C2 is called the circle of the ellipse. This property should not be confused with the definition of an ellipse with help of a directrix below, for an arbitrary point the distance to the focus is 2 + y 2 and to the second focus 2 + y 2. Hence the point is on the ellipse if the condition is fulfilled 2 + y 2 +2 + y 2 =2 a. The shape parameters a, b are called the major axis. The points V3 =, V4 = are the co-vertices and it follows from the equation that the ellipse is symmetric with respect to both of the coordinate axes and hence symmetric with respect to the origin

7.
Function (mathematics)
–
In mathematics, a function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output. An example is the function that each real number x to its square x2. The output of a function f corresponding to a x is denoted by f. In this example, if the input is −3, then the output is 9, likewise, if the input is 3, then the output is also 9, and we may write f =9. The input variable are sometimes referred to as the argument of the function, Functions of various kinds are the central objects of investigation in most fields of modern mathematics. There are many ways to describe or represent a function, some functions may be defined by a formula or algorithm that tells how to compute the output for a given input. Others are given by a picture, called the graph of the function, in science, functions are sometimes defined by a table that gives the outputs for selected inputs. A function could be described implicitly, for example as the inverse to another function or as a solution of a differential equation, sometimes the codomain is called the functions range, but more commonly the word range is used to mean, instead, specifically the set of outputs. For example, we could define a function using the rule f = x2 by saying that the domain and codomain are the numbers. The image of this function is the set of real numbers. In analogy with arithmetic, it is possible to define addition, subtraction, multiplication, another important operation defined on functions is function composition, where the output from one function becomes the input to another function. Linking each shape to its color is a function from X to Y, each shape is linked to a color, there is no shape that lacks a color and no shape that has more than one color. This function will be referred to as the color-of-the-shape function, the input to a function is called the argument and the output is called the value. The set of all permitted inputs to a function is called the domain of the function. Thus, the domain of the function is the set of the four shapes. The concept of a function does not require that every possible output is the value of some argument, a second example of a function is the following, the domain is chosen to be the set of natural numbers, and the codomain is the set of integers. The function associates to any number n the number 4−n. For example, to 1 it associates 3 and to 10 it associates −6, a third example of a function has the set of polygons as domain and the set of natural numbers as codomain

8.
Analytic geometry
–
In classical mathematics, analytic geometry, also known as coordinate geometry, or Cartesian geometry, is the study of geometry using a coordinate system. Analytic geometry is used in physics and engineering, and also in aviation, rocketry, space science. It is the foundation of most modern fields of geometry, including algebraic, differential, discrete, usually the Cartesian coordinate system is applied to manipulate equations for planes, straight lines, and squares, often in two and sometimes in three dimensions. Geometrically, one studies the Euclidean plane and Euclidean space, the numerical output, however, might also be a vector or a shape. That the algebra of the numbers can be employed to yield results about the linear continuum of geometry relies on the Cantor–Dedekind axiom. Apollonius in the Conics further developed a method that is so similar to analytic geometry that his work is thought to have anticipated the work of Descartes by some 1800 years. He further developed relations between the abscissas and the corresponding ordinates that are equivalent to rhetorical equations of curves and that is, equations were determined by curves, but curves were not determined by equations. Coordinates, variables, and equations were subsidiary notions applied to a specific geometric situation, analytic geometry was independently invented by René Descartes and Pierre de Fermat, although Descartes is sometimes given sole credit. Cartesian geometry, the term used for analytic geometry, is named after Descartes. This work, written in his native French tongue, and its philosophical principles, initially the work was not well received, due, in part, to the many gaps in arguments and complicated equations. Only after the translation into Latin and the addition of commentary by van Schooten in 1649 did Descartess masterpiece receive due recognition, Pierre de Fermat also pioneered the development of analytic geometry. Although not published in his lifetime, a form of Ad locos planos et solidos isagoge was circulating in Paris in 1637. Clearly written and well received, the Introduction also laid the groundwork for analytical geometry, as a consequence of this approach, Descartes had to deal with more complicated equations and he had to develop the methods to work with polynomial equations of higher degree. It was Leonard Euler who first applied the method in a systematic study of space curves and surfaces. In analytic geometry, the plane is given a coordinate system, similarly, Euclidean space is given coordinates where every point has three coordinates. The value of the coordinates depends on the choice of the point of origin. These are typically written as an ordered pair and this system can also be used for three-dimensional geometry, where every point in Euclidean space is represented by an ordered triple of coordinates. In polar coordinates, every point of the plane is represented by its distance r from the origin and its angle θ from the polar axis