advertisement
Infinite photos and videos for every Wiki article · Find something interesting to watch in seconds
History
Page
Force (as multiples of 10000 N) between two nucleons as a function of distance as computed from the Reid potential (1968). The spins of the neutron an
Force (as multiples of 10000 N) between two nucleons as a function of distance as computed from the Reid potential (1968). The spins of the neutron and proton are aligned, and they are in the S angular momentum state. The attractive (negative) force has a maximum at a distance of about 1 fm with a force of about 25000 N. Particles much closer than a distance of 0.8 fm experience a large repulsive (positive) force. Particles separated by a distance greater than 1 fm are still attracted (Yukawa potential), but the force falls as an exponential function of distance.
Corresponding potential energy (in units of MeV) of two nucleons as a function of distance as computed from the Reid potential. The potential well has
Corresponding potential energy (in units of MeV) of two nucleons as a function of distance as computed from the Reid potential. The potential well has a minimum at a distance of about 0.8 fm. With this potential nucleons can become bound with a negative "binding energy".
Page
Ernest Rutherford at the first Solvay Conference, 1911
Ernest Rutherford at the first Solvay Conference, 1911