1.
Schlegel diagram
–
In geometry, a Schlegel diagram is a projection of a polytope from R d into R d −1 through a point beyond one of its facets or faces. The resulting entity is a subdivision of the facet in R d −1 that is combinatorially equivalent to the original polytope. Named for Victor Schlegel, who in 1886 introduced this tool for studying combinatorial and topological properties of polytopes, in dimensions 3 and 4, a Schlegel diagram is a projection of a polyhedron into a plane figure and a projection of a 4-polytope to 3-space, respectively. As such, Schlegel diagrams are used as a means of visualizing four-dimensional polytopes. The most elementary Schlegel diagram, that of a polyhedron, was described by Duncan Sommerville as follows, if it is projected from any external point, since each ray cuts it twice, it will be represented by a polygonal area divided twice over into polygons. It is always possible by suitable choice of the centre of projection to make the projection of one face completely contain the projections of all the other faces and this is called a Schlegel diagram of the polyhedron. The Schlegel diagram completely represents the morphology of the polyhedron, Sommerville also considers the case of a simplex in four dimensions, The Schlegel diagram of simplex in S4 is a tetrahedron divided into four tetrahedra. More generally, a polytope in n-dimensions has a Schegel diagram constructed by a perspective projection viewed from a point outside of the polytope, all vertices and edges of the polytope are projected onto a hyperplane of that facet. If the polytope is convex, a point near the facet will exist which maps the facet outside, and all other facets inside, so no edges need to cross in the projection. Net – A different approach for visualization by lowering the dimension of a polytope is to build a net, disconnecting facets and this maintains the geometric scale and shape, but makes the topological connections harder to see. Victor Schlegel Theorie der homogen zusammengesetzten Raumgebilde, Nova Acta, Ksl, deutsche Akademie der Naturforscher, Band XLIV, Nr. 4, Druck von E. Blochmann & Sohn in Dresden, Victor Schlegel Ueber Projectionsmodelle der regelmässigen vier-dimensionalen Körper, Waren. Regular Polytopes, Dover edition, ISBN 0-486-61480-8 Grünbaum, Branko, Kaibel, Volker, Klee, Victor, convex polytopes, New York & London, Springer-Verlag, ISBN 0-387-00424-6. George W. Hart, 4D Polytope Projection Models by 3D Printing Nrich maths – for the teenager
2.
Convex regular 4-polytope
–
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the analogs of the regular polyhedra in three dimensions and the regular polygons in two dimensions. Regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century, There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century, Schläfli discovered that there are precisely six such figures. Schläfli also found four of the regular star 4-polytopes and he skipped the remaining six because he would not allow forms that failed the Euler characteristic on cells or vertex figures. That excludes cells and vertex figures as, and, the six convex and ten star polytopes described are the only solutions to these constraints. There are four nonconvex Schläfli symbols that have cells and vertex figures, and pass the dihedral test. The regular convex 4-polytopes are the analogs of the Platonic solids in three dimensions and the convex regular polygons in two dimensions. Five of them may be thought of as close analogs of the Platonic solids, There is one additional figure, the 24-cell, which has no close three-dimensional equivalent. Each convex regular 4-polytope is bounded by a set of 3-dimensional cells which are all Platonic solids of the same type and these are fitted together along their respective faces in a regular fashion. The following tables lists some properties of the six convex regular 4-polytopes, the symmetry groups of these 4-polytopes are all Coxeter groups and given in the notation described in that article. The number following the name of the group is the order of the group, John Conway advocates the names simplex, orthoplex, tesseract, octaplex or polyoctahedron, dodecaplex or polydodecahedron, and tetraplex or polytetrahedron. The Euler characteristic for all 4-polytopes is zero, we have the 4-dimensional analog of Eulers polyhedral formula, the topology of any given 4-polytope is defined by its Betti numbers and torsion coefficients. The following table shows some 2-dimensional projections of these 4-polytopes, various other visualizations can be found in the external links below. The Coxeter-Dynkin diagram graphs are given below the Schläfli symbol. The Schläfli–Hess 4-polytopes are the set of 10 regular self-intersecting star polychora. They are named in honor of their discoverers, Ludwig Schläfli, each is represented by a Schläfli symbol in which one of the numbers is 5/2. They are thus analogous to the regular nonconvex Kepler–Poinsot polyhedra and their names given here were given by John Conway, extending Cayleys names for the Kepler–Poinsot polyhedra, along with stellated and great, he adds a grand modifier
3.
Cross-polytope
–
In geometry, a cross-polytope, orthoplex, hyperoctahedron, or cocube is a regular, convex polytope that exists in n-dimensions. A 2-orthoplex is a square, a 3-orthoplex is an octahedron. Its facets are simplexes of the dimension, while the cross-polytopes vertex figure is another cross-polytope from the previous dimension. The vertices of a cross-polytope are all the permutations of, the cross-polytope is the convex hull of its vertices. The n-dimensional cross-polytope can also be defined as the unit ball in the ℓ1-norm on Rn. In 1 dimension the cross-polytope is simply the line segment, in 2 dimensions it is a square with vertices, in 3 dimensions it is an octahedron—one of the five convex regular polyhedra known as the Platonic solids. Higher-dimensional cross-polytopes are generalizations of these, the cross-polytope is the dual polytope of the hypercube. The 1-skeleton of a n-dimensional cross-polytope is a Turán graph T, the 4-dimensional cross-polytope also goes by the name hexadecachoron or 16-cell. It is one of six convex regular 4-polytopes and these 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. The cross polytope family is one of three regular polytope families, labeled by Coxeter as βn, the two being the hypercube family, labeled as γn, and the simplices, labeled as αn. A fourth family, the infinite tessellations of hypercubes, he labeled as δn, the n-dimensional cross-polytope has 2n vertices, and 2n facets all of which are n−1 simplices. The vertex figures are all n −1 cross-polytopes, the Schläfli symbol of the cross-polytope is. The dihedral angle of the n-dimensional cross-polytope is δ n = arccos and this gives, δ2 = arccos = 90°, δ3 = arccos =109. 47°, δ4 = arccos = 120°, δ5 = arccos =126. 87°. The volume of the n-dimensional cross-polytope is 2 n n. Petrie polygon projections map the points into a regular 2n-gon or lower order regular polygons. A second projection takes the 2-gon petrie polygon of the dimension, seen as a bipyramid, projected down the axis. The vertices of a cross polytope are all at equal distance from each other in the Manhattan distance. Kusners conjecture states that this set of 2d points is the largest possible equidistant set for this distance, Regular complex polytopes can be defined in complex Hilbert space called generalized orthoplexes, βpn =22. 2p, or. Real solutions exist with p=2, i. e. β2n = βn =22.22 =, for p>2, they exist in C n
4.
Demihypercube
–
In geometry, demihypercubes are a class of n-polytopes constructed from alternation of an n-hypercube, labeled as hγn for being half of the hypercube family, γn. Half of the vertices are deleted and new facets are formed, the 2n facets become 2n -demicubes, and 2n -simplex facets are formed in place of the deleted vertices. They have been named with a prefix to each hypercube name, demicube, demitesseract. The demicube is identical to the tetrahedron, and the demitesseract is identical to the regular 16-cell. The demipenteract is considered semiregular for having regular facets. Higher forms dont have all regular facets but are all uniform polytopes, the vertices and edges of a demihypercube form two copies of the halved cube graph. Thorold Gosset described the demipenteract in his 1900 publication listing all of the regular and semiregular figures in n-dimensions above 3 and he called it a 5-ic semi-regular. It also exists within the semiregular k21 polytope family, the demihypercubes can be represented by extended Schläfli symbols of the form h as half the vertices of. The vertex figures of demihypercubes are rectified n-simplexes and they are represented by Coxeter-Dynkin diagrams of three constructive forms. Coxeter also labeled the third bifurcating diagrams as 1k1 representing the lengths of the 3 branches, an n-demicube, n greater than 2, has n*/2 edges meeting at each vertex. The graphs below show less edges at each vertex due to overlapping edges in the symmetry projection. Facets, Dn, n-1 = n + 2n The symmetry group of the demihypercube is the Coxeter group D n, has order 2 n −1 n. and is an index 2 subgroup of the hyperoctahedral group. It is generated by permutations of the axes and reflections along pairs of coordinate axes. Constructions as alternated orthotopes have the topology, but can be stretched with different lengths in n-axes of symmetry. The rhombic disphenoid is the example as alternated cuboid. It has three sets of edge lengths, and scalene triangle faces, Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Olshevsky, George. Archived from the original on 4 February 2007
5.
Face (geometry)
–
In solid geometry, a face is a flat surface that forms part of the boundary of a solid object, a three-dimensional solid bounded exclusively by flat faces is a polyhedron. In more technical treatments of the geometry of polyhedra and higher-dimensional polytopes, in elementary geometry, a face is a polygon on the boundary of a polyhedron. Other names for a polygonal face include side of a polyhedron, for example, any of the six squares that bound a cube is a face of the cube. Sometimes face is used to refer to the 2-dimensional features of a 4-polytope. With this meaning, the 4-dimensional tesseract has 24 square faces, some other polygons, which are not faces, are also important for polyhedra and tessellations. These include Petrie polygons, vertex figures and facets, any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Eulers polyhedron formula, thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, in higher-dimensional geometry the faces of a polytope are features of all dimensions. A face of dimension k is called a k-face, for example, the polygonal faces of an ordinary polyhedron are 2-faces. In set theory, the set of faces of a polytope includes the polytope itself, for any n-polytope, −1 ≤ k ≤ n. For example, with meaning, the faces of a cube include the empty set, its vertices, edges and squares. Formally, a face of a polytope P is the intersection of P with any closed halfspace whose boundary is disjoint from the interior of P, from this definition it follows that the set of faces of a polytope includes the polytope itself and the empty set. In other areas of mathematics, such as the theories of abstract polytopes and star polytopes, abstract theory still requires that the set of faces include the polytope itself and the empty set. A cell is an element of a 4-dimensional polytope or 3-dimensional tessellation. Cells are facets for 4-polytopes and 3-honeycombs, examples, In higher-dimensional geometry, the facets of a n-polytope are the -faces of dimension one less than the polytope itself. A polytope is bounded by its facets, for example, The facets of a line segment are its 0-faces or vertices. The facets of a polygon are its 1-faces or edges, the facets of a polyhedron or plane tiling are its 2-faces. The facets of a 4D polytope or 3-honeycomb are its 3-faces, the facets of a 5D polytope or 4-honeycomb are its 4-faces
6.
Tetrahedron
–
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra, the tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a polygon base. In the case of a tetrahedron the base is a triangle, like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. For any tetrahedron there exists a sphere on which all four vertices lie, a regular tetrahedron is one in which all four faces are equilateral triangles. It is one of the five regular Platonic solids, which have known since antiquity. In a regular tetrahedron, not only are all its faces the same size and shape, regular tetrahedra alone do not tessellate, but if alternated with regular octahedra they form the alternated cubic honeycomb, which is a tessellation. The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron, the compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula. This form has Coxeter diagram and Schläfli symbol h, the tetrahedron in this case has edge length 2√2. Inverting these coordinates generates the dual tetrahedron, and the together form the stellated octahedron. In other words, if C is the centroid of the base and this follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other. The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron, the symmetries of a regular tetrahedron correspond to half of those of a cube, those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by point inversion, the regular tetrahedron has 24 isometries, forming the symmetry group Td, isomorphic to the symmetric group, S4. The first corresponds to the A2 Coxeter plane, the two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these intersects the tetrahedron the resulting cross section is a rectangle. When the intersecting plane is one of the edges the rectangle is long. When halfway between the two edges the intersection is a square, the aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly, if the tetrahedron is bisected on this plane, both halves become wedges
7.
2-face
–
In solid geometry, a face is a flat surface that forms part of the boundary of a solid object, a three-dimensional solid bounded exclusively by flat faces is a polyhedron. In more technical treatments of the geometry of polyhedra and higher-dimensional polytopes, in elementary geometry, a face is a polygon on the boundary of a polyhedron. Other names for a polygonal face include side of a polyhedron, for example, any of the six squares that bound a cube is a face of the cube. Sometimes face is used to refer to the 2-dimensional features of a 4-polytope. With this meaning, the 4-dimensional tesseract has 24 square faces, some other polygons, which are not faces, are also important for polyhedra and tessellations. These include Petrie polygons, vertex figures and facets, any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Eulers polyhedron formula, thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, in higher-dimensional geometry the faces of a polytope are features of all dimensions. A face of dimension k is called a k-face, for example, the polygonal faces of an ordinary polyhedron are 2-faces. In set theory, the set of faces of a polytope includes the polytope itself, for any n-polytope, −1 ≤ k ≤ n. For example, with meaning, the faces of a cube include the empty set, its vertices, edges and squares. Formally, a face of a polytope P is the intersection of P with any closed halfspace whose boundary is disjoint from the interior of P, from this definition it follows that the set of faces of a polytope includes the polytope itself and the empty set. In other areas of mathematics, such as the theories of abstract polytopes and star polytopes, abstract theory still requires that the set of faces include the polytope itself and the empty set. A cell is an element of a 4-dimensional polytope or 3-dimensional tessellation. Cells are facets for 4-polytopes and 3-honeycombs, examples, In higher-dimensional geometry, the facets of a n-polytope are the -faces of dimension one less than the polytope itself. A polytope is bounded by its facets, for example, The facets of a line segment are its 0-faces or vertices. The facets of a polygon are its 1-faces or edges, the facets of a polyhedron or plane tiling are its 2-faces. The facets of a 4D polytope or 3-honeycomb are its 3-faces, the facets of a 5D polytope or 4-honeycomb are its 4-faces
8.
Triangle
–
A triangle is a polygon with three edges and three vertices. It is one of the shapes in geometry. A triangle with vertices A, B, and C is denoted △ A B C, in Euclidean geometry any three points, when non-collinear, determine a unique triangle and a unique plane. This article is about triangles in Euclidean geometry except where otherwise noted, triangles can be classified according to the lengths of their sides, An equilateral triangle has all sides the same length. An equilateral triangle is also a polygon with all angles measuring 60°. An isosceles triangle has two sides of equal length, some mathematicians define an isosceles triangle to have exactly two equal sides, whereas others define an isosceles triangle as one with at least two equal sides. The latter definition would make all equilateral triangles isosceles triangles, the 45–45–90 right triangle, which appears in the tetrakis square tiling, is isosceles. A scalene triangle has all its sides of different lengths, equivalently, it has all angles of different measure. Hatch marks, also called tick marks, are used in diagrams of triangles, a side can be marked with a pattern of ticks, short line segments in the form of tally marks, two sides have equal lengths if they are both marked with the same pattern. In a triangle, the pattern is no more than 3 ticks. Similarly, patterns of 1,2, or 3 concentric arcs inside the angles are used to indicate equal angles, triangles can also be classified according to their internal angles, measured here in degrees. A right triangle has one of its interior angles measuring 90°, the side opposite to the right angle is the hypotenuse, the longest side of the triangle. The other two sides are called the legs or catheti of the triangle, special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3–4–5 right triangle, where 32 +42 =52, in this situation,3,4, and 5 are a Pythagorean triple. The other one is a triangle that has 2 angles that each measure 45 degrees. Triangles that do not have an angle measuring 90° are called oblique triangles, a triangle with all interior angles measuring less than 90° is an acute triangle or acute-angled triangle. If c is the length of the longest side, then a2 + b2 > c2, a triangle with one interior angle measuring more than 90° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side, then a2 + b2 < c2, a triangle with an interior angle of 180° is degenerate
9.
Edge (geometry)
–
For edge in graph theory, see Edge In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a segment on the boundary. In a polyhedron or more generally a polytope, an edge is a segment where two faces meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal. In graph theory, an edge is an abstract object connecting two vertices, unlike polygon and polyhedron edges which have a concrete geometric representation as a line segment. However, any polyhedron can be represented by its skeleton or edge-skeleton, conversely, the graphs that are skeletons of three-dimensional polyhedra can be characterized by Steinitzs theorem as being exactly the 3-vertex-connected planar graphs. Any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges and this equation is known as Eulers polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces, for example, a cube has 8 vertices and 6 faces, and hence 12 edges. In a polygon, two edges meet at each vertex, more generally, by Balinskis theorem, at least d edges meet at every vertex of a convex polytope. Similarly, in a polyhedron, exactly two faces meet at every edge, while in higher dimensional polytopes three or more two-dimensional faces meet at every edge. Thus, the edges of a polygon are its facets, the edges of a 3-dimensional convex polyhedron are its ridges, archived from the original on 4 February 2007
10.
Vertex (geometry)
–
In geometry, a vertex is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. A vertex is a point of a polygon, polyhedron, or other higher-dimensional polytope. However, in theory, vertices may have fewer than two incident edges, which is usually not allowed for geometric vertices. However, a smooth approximation to a polygon will also have additional vertices. A polygon vertex xi of a simple polygon P is a principal polygon vertex if the diagonal intersects the boundary of P only at x and x, there are two types of principal vertices, ears and mouths. A principal vertex xi of a simple polygon P is called an ear if the diagonal that bridges xi lies entirely in P, according to the two ears theorem, every simple polygon has at least two ears. A principal vertex xi of a simple polygon P is called a mouth if the diagonal lies outside the boundary of P. Any convex polyhedrons surface has Euler characteristic V − E + F =2, where V is the number of vertices, E is the number of edges and this equation is known as Eulers polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces, for example, a cube has 12 edges and 6 faces, and hence 8 vertices
11.
Vertex figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
12.
Octahedron
–
In geometry, an octahedron is a polyhedron with eight faces, twelve edges, and six vertices. A regular octahedron is a Platonic solid composed of eight equilateral triangles, a regular octahedron is the dual polyhedron of a cube. It is a square bipyramid in any of three orthogonal orientations and it is also a triangular antiprism in any of four orientations. An octahedron is the case of the more general concept of a cross polytope. A regular octahedron is a 3-ball in the Manhattan metric, the second and third correspond to the B2 and A2 Coxeter planes. The octahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. An octahedron with edge length √2 can be placed with its center at the origin and its vertices on the coordinate axes, the Cartesian coordinates of the vertices are then. In an x–y–z Cartesian coordinate system, the octahedron with center coordinates, additionally the inertia tensor of the stretched octahedron is I =. These reduce to the equations for the regular octahedron when x m = y m = z m = a 22, the interior of the compound of two dual tetrahedra is an octahedron, and this compound, called the stella octangula, is its first and only stellation. Correspondingly, an octahedron is the result of cutting off from a regular tetrahedron. One can also divide the edges of an octahedron in the ratio of the mean to define the vertices of an icosahedron. There are five octahedra that define any given icosahedron in this fashion, octahedra and tetrahedra can be alternated to form a vertex, edge, and face-uniform tessellation of space, called the octet truss by Buckminster Fuller. This is the only such tiling save the regular tessellation of cubes, another is a tessellation of octahedra and cuboctahedra. The octahedron is unique among the Platonic solids in having a number of faces meeting at each vertex. Consequently, it is the member of that group to possess mirror planes that do not pass through any of the faces. Using the standard nomenclature for Johnson solids, an octahedron would be called a square bipyramid, truncation of two opposite vertices results in a square bifrustum. The octahedron is 4-connected, meaning that it takes the removal of four vertices to disconnect the remaining vertices and it is one of only four 4-connected simplicial well-covered polyhedra, meaning that all of the maximal independent sets of its vertices have the same size
13.
Petrie polygon
–
In geometry, a Petrie polygon for a regular polytope of n dimensions is a skew polygon such that every consecutive sides belong to one of the facets. The Petrie polygon of a polygon is the regular polygon itself. For every regular polytope there exists an orthogonal projection onto a plane such that one Petrie polygon becomes a regular polygon with the remainder of the interior to it. The plane in question is the Coxeter plane of the group of the polygon. These polygons and projected graphs are useful in visualizing symmetric structure of the regular polytopes. John Flinders Petrie was the son of Egyptologist Flinders Petrie. He was born in 1907 and as a schoolboy showed remarkable promise of mathematical ability, in periods of intense concentration he could answer questions about complicated four-dimensional objects by visualizing them. He first noted the importance of the skew polygons which appear on the surface of regular polyhedra. When my incredulity had begun to subside, he described them to me, one consisting of squares, six at each vertex, in 1938 Petrie collaborated with Coxeter, Patrick du Val, and H. T. Flather to produce The Fifty-Nine Icosahedra for publication, realizing the geometric facility of the skew polygons used by Petrie, Coxeter named them after his friend when he wrote Regular Polytopes. In 1972, a few months after his retirement, Petrie was killed by a car attempting to cross a motorway near his home in Surrey. The idea of Petrie polygons was later extended to semiregular polytopes, the Petrie polygon of the regular polyhedron has h sides, where h+2=24/. The regular duals, and, are contained within the same projected Petrie polygon, three of the Kepler–Poinsot polyhedra have hexagonal, and decagrammic, petrie polygons. The Petrie polygon projections are most useful for visualization of polytopes of dimension four and this table represents Petrie polygon projections of 3 regular families, and the exceptional Lie group En which generate semiregular and uniform polytopes for dimensions 4 to 8. Coxeter, H. S. M. Regular Polytopes, 3rd ed, Section 4.3 Flags and Orthoschemes, Section 11.3 Petrie polygons Ball, W. W. R. and H. S. M. Coxeter Mathematical Recreations and Essays, 13th ed. The Beauty of Geometry, Twelve Essays, Dover Publications LCCN 99-35678 Peter McMullen, Egon Schulte Abstract Regular Polytopes, ISBN 0-521-81496-0 Steinberg, Robert, ON THE NUMBER OF SIDES OF A PETRIE POLYGON Weisstein, Eric W. Petrie polygon. Weisstein, Eric W. Cross polytope graphs, Weisstein, Eric W. Gosset graph 3_21
14.
Octagon
–
In geometry, an octagon is an eight-sided polygon or 8-gon. A regular octagon has Schläfli symbol and can also be constructed as a truncated square, t. A truncated octagon, t is a hexadecagon, t, the sum of all the internal angles of any octagon is 1080°. As with all polygons, the external angles total 360°, the midpoint octagon of a reference octagon has its eight vertices at the midpoints of the sides of the reference octagon. A regular octagon is a figure with sides of the same length. It has eight lines of symmetry and rotational symmetry of order 8. A regular octagon is represented by the Schläfli symbol, the internal angle at each vertex of a regular octagon is 135°. The area of an octagon of side length a is given by A =2 cot π8 a 2 =2 a 2 ≃4.828 a 2. In terms of the circumradius R, the area is A =4 sin π4 R2 =22 R2 ≃2.828 R2. In terms of the r, the area is A =8 tan π8 r 2 =8 r 2 ≃3.314 r 2. These last two coefficients bracket the value of pi, the area of the unit circle. The area can also be expressed as A = S2 − a 2, where S is the span of the octagon, or the second-shortest diagonal, and a is the length of one of the sides, or bases. This is easily proven if one takes an octagon, draws a square around the outside and then takes the corner triangles and places them with right angles pointed inward, the edges of this square are each the length of the base. Given the length of a side a, the span S is S = a 2 + a + a 2 = a ≈2.414 a. The area is then as above, A =2 − a 2 =2 a 2 ≈4.828 a 2, expressed in terms of the span, the area is A =2 S2 ≈0.828 S2. Another simple formula for the area is A =2 a S, more often the span S is known, and the length of the sides, a, is to be determined, as when cutting a square piece of material into a regular octagon. From the above, a ≈ S /2.414, the two end lengths e on each side, as well as being e = a /2, may be calculated as e = /2. The circumradius of the octagon in terms of the side length a is R = a
15.
Coxeter group
–
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups, however, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced as abstractions of reflection groups, and finite Coxeter groups were classified in 1935, Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the groups of regular polytopes. The condition m i j = ∞ means no relation of the form m should be imposed, the pair where W is a Coxeter group with generators S = is called a Coxeter system. Note that in general S is not uniquely determined by W, for example, the Coxeter groups of type B3 and A1 × A3 are isomorphic but the Coxeter systems are not equivalent. A number of conclusions can be drawn immediately from the above definition, the relation m i i =1 means that 1 =2 =1 for all i, as such the generators are involutions. If m i j =2, then the r i and r j commute. This follows by observing that x x = y y =1, in order to avoid redundancy among the relations, it is necessary to assume that m i j = m j i. This follows by observing that y y =1, together with m =1 implies that m = m y y = y m y = y y =1. Alternatively, k and k are elements, as y k y −1 = k y y −1 = k. The Coxeter matrix is the n × n, symmetric matrix with entries m i j, indeed, every symmetric matrix with positive integer and ∞ entries and with 1s on the diagonal such that all nondiagonal entries are greater than 1 serves to define a Coxeter group. The Coxeter matrix can be encoded by a Coxeter diagram. The vertices of the graph are labelled by generator subscripts, vertices i and j are adjacent if and only if m i j ≥3. An edge is labelled with the value of m i j whenever the value is 4 or greater, in particular, two generators commute if and only if they are not connected by an edge. Furthermore, if a Coxeter graph has two or more connected components, the group is the direct product of the groups associated to the individual components. Thus the disjoint union of Coxeter graphs yields a product of Coxeter groups. The Coxeter matrix, M i j, is related to the n × n Schläfli matrix C with entries C i j = −2 cos , but the elements are modified, being proportional to the dot product of the pairwise generators
16.
Dual polyhedron
–
Such dual figures remain combinatorial or abstract polyhedra, but not all are also geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron, duality preserves the symmetries of a polyhedron. Therefore, for classes of polyhedra defined by their symmetries. Thus, the regular polyhedra – the Platonic solids and Kepler-Poinsot polyhedra – form dual pairs, the dual of an isogonal polyhedron, having equivalent vertices, is one which is isohedral, having equivalent faces. The dual of a polyhedron is also isotoxal. Duality is closely related to reciprocity or polarity, a transformation that. There are many kinds of duality, the kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality. The duality of polyhedra is often defined in terms of polar reciprocation about a concentric sphere. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2. The vertices of the dual are the reciprocal to the face planes of the original. Also, any two adjacent vertices define an edge, and these will reciprocate to two adjacent faces which intersect to define an edge of the dual and this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, and r 1 and r 2 respectively the distances from its centre to the pole and its polar, then, r 1. R2 = r 02 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point. Failing that, a sphere, inscribed sphere, or midsphere is commonly used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required plane at infinity. Some theorists prefer to stick to Euclidean space and say there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, the concept of duality here is closely related to the duality in projective geometry, where lines and edges are interchanged
17.
Tesseract
–
In geometry, the tesseract is the four-dimensional analog of the cube, the tesseract is to the cube as the cube is to the square. Just as the surface of the consists of six square faces. The tesseract is one of the six convex regular 4-polytopes, the tesseract is also called an 8-cell, C8, octachoron, octahedroid, cubic prism, and tetracube. It is the four-dimensional hypercube, or 4-cube as a part of the family of hypercubes or measure polytopes. In this publication, as well as some of Hintons later work, the tesseract can be constructed in a number of ways. As a regular polytope with three cubes folded together around every edge, it has Schläfli symbol with hyperoctahedral symmetry of order 384, constructed as a 4D hyperprism made of two parallel cubes, it can be named as a composite Schläfli symbol ×, with symmetry order 96. As a 4-4 duoprism, a Cartesian product of two squares, it can be named by a composite Schläfli symbol ×, with symmetry order 64, as an orthotope it can be represented by composite Schläfli symbol × × × or 4, with symmetry order 16. Since each vertex of a tesseract is adjacent to four edges, the dual polytope of the tesseract is called the hexadecachoron, or 16-cell, with Schläfli symbol. The standard tesseract in Euclidean 4-space is given as the hull of the points. That is, it consists of the points, A tesseract is bounded by eight hyperplanes, each pair of non-parallel hyperplanes intersects to form 24 square faces in a tesseract. Three cubes and three squares intersect at each edge, there are four cubes, six squares, and four edges meeting at every vertex. All in all, it consists of 8 cubes,24 squares,32 edges, the construction of a hypercube can be imagined the following way, 1-dimensional, Two points A and B can be connected to a line, giving a new line segment AB. 2-dimensional, Two parallel line segments AB and CD can be connected to become a square, 3-dimensional, Two parallel squares ABCD and EFGH can be connected to become a cube, with the corners marked as ABCDEFGH. 4-dimensional, Two parallel cubes ABCDEFGH and IJKLMNOP can be connected to become a hypercube and it is possible to project tesseracts into three- or two-dimensional spaces, as projecting a cube is possible on a two-dimensional space. Projections on the 2D-plane become more instructive by rearranging the positions of the projected vertices, the scheme is similar to the construction of a cube from two squares, juxtapose two copies of the lower-dimensional cube and connect the corresponding vertices. Each edge of a tesseract is of the same length, the regular complex polytope 42, in C2 has a real representation as a tesseract or 4-4 duoprism in 4-dimensional space. 42 has 16 vertices, and 8 4-edges and its symmetry is 42, order 32. It also has a lower construction, or 4×4, with symmetry 44
18.
Convex polytope
–
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn. Some authors use the terms polytope and convex polyhedron interchangeably. In addition, some require a polytope to be a bounded set. The terms bounded/unbounded convex polytope will be used whenever the boundedness is critical to the discussed issue. Yet other texts treat a convex n-polytope as a surface or -manifold, Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. A comprehensive and influential book in the subject, called Convex Polytopes, was published in 1967 by Branko Grünbaum, in 2003 the 2nd edition of the book was published, with significant additional material contributed by new writers. In Grünbaums book, and in other texts in discrete geometry. Grünbaum points out that this is solely to avoid the repetition of the word convex. A polytope is called if it is an n-dimensional object in Rn. Many examples of bounded convex polytopes can be found in the article polyhedron, a convex polytope may be defined in a number of ways, depending on what is more suitable for the problem at hand. Grünbaums definition is in terms of a set of points in space. Other important definitions are, as the intersection of half-spaces and as the hull of a set of points. This is equivalent to defining a bounded convex polytope as the hull of a finite set of points. Such a definition is called a vertex representation, for a compact convex polytope, the minimal V-description is unique and it is given by the set of the vertices of the polytope. A convex polytope may be defined as an intersection of a number of half-spaces. Such definition is called a half-space representation, there exist infinitely many H-descriptions of a convex polytope. However, for a convex polytope, the minimal H-description is in fact unique and is given by the set of the facet-defining halfspaces. A closed half-space can be written as an inequality, a 1 x 1 + a 2 x 2 + ⋯ + a n x n ≤ b where n is the dimension of the space containing the polytope under consideration
19.
Isogonal figure
–
In geometry, a polytope is isogonal or vertex-transitive if, loosely speaking, all its vertices are equivalent. That implies that each vertex is surrounded by the kinds of face in the same or reverse order. Technically, we say that for any two vertices there exists a symmetry of the polytope mapping the first isometrically onto the second. Other ways of saying this are that the group of automorphisms of the polytope is transitive on its vertices, all vertices of a finite n-dimensional isogonal figure exist on an -sphere. The term isogonal has long used for polyhedra. Vertex-transitive is a synonym borrowed from modern ideas such as symmetry groups, all regular polygons, apeirogons and regular star polygons are isogonal. The dual of a polygon is an isotoxal polygon. Some even-sided polygons and apeirogons which alternate two edge lengths, for example a rectangle, are isogonal, all planar isogonal 2n-gons have dihedral symmetry with reflection lines across the mid-edge points. An isogonal polyhedron and 2D tiling has a kind of vertex. An isogonal polyhedron with all faces is also a uniform polyhedron. Geometrically distorted variations of uniform polyhedra and tilings can also be given the vertex configuration, isogonal polyhedra and 2D tilings may be further classified, Regular if it is also isohedral and isotoxal, this implies that every face is the same kind of regular polygon. Quasi-regular if it is also isotoxal but not isohedral, semi-regular if every face is a regular polygon but it is not isohedral or isotoxal. Uniform if every face is a polygon, i. e. it is regular, quasiregular or semi-regular. Noble if it is also isohedral and these definitions can be extended to higher-dimensional polytopes and tessellations. Most generally, all uniform polytopes are isogonal, for example, the dual of an isogonal polytope is called an isotope which is transitive on its facets. A polytope or tiling may be called if its vertices form k transitivity classes. A more restrictive term, k-uniform is defined as a figure constructed only from regular polygons. They can be represented visually with colors by different uniform colorings, edge-transitive Face-transitive Peter R. Cromwell, Polyhedra, Cambridge University Press 1997, ISBN 0-521-55432-2, p.369 Transitivity Grünbaum, Branko, Shephard, G. C
20.
Isotoxal figure
–
In geometry, a polytope, or a tiling, is isotoxal or edge-transitive if its symmetries act transitively on its edges. The term isotoxal is derived from the Greek τοξον meaning arc, an isotoxal polygon is an equilateral polygon, but not all equilateral polygons are isotoxal. The duals of isotoxal polygons are isogonal polygons, in general, an isotoxal 2n-gon will have Dn dihedral symmetry. A rhombus is a polygon with D2 symmetry. All regular polygons are isotoxal, having double the symmetry order. A regular 2n-gon is a polygon and can be marked with alternately colored vertices. An isotoxal polyhedron or tiling must be either isogonal or isohedral or both, regular polyhedra are isohedral, isogonal and isotoxal. Quasiregular polyhedra are isogonal and isotoxal, but not isohedral, their duals are isohedral and isotoxal, not every polyhedron or 2-dimensional tessellation constructed from regular polygons is isotoxal. An isotoxal polyhedron has the dihedral angle for all edges. There are nine convex isotoxal polyhedra formed from the Platonic solids,8 formed by the Kepler–Poinsot polyhedra, cS1 maint, Multiple names, authors list Coxeter, Harold Scott MacDonald, Longuet-Higgins, M. S. Miller, J. C. P. Uniform polyhedra, Philosophical Transactions of the Royal Society of London, mathematical and Physical Sciences,246, 401–450, doi,10. 1098/rsta.1954.0003, ISSN 0080-4614, JSTOR91532, MR0062446
21.
Isohedral figure
–
In geometry, a polytope of dimension 3 or higher is isohedral or face-transitive when all its faces are the same. More specifically, all faces must be not merely congruent but must be transitive, in other words, for any faces A and B, there must be a symmetry of the entire solid by rotations and reflections that maps A onto B. For this reason, convex polyhedra are the shapes that will make fair dice. They can be described by their face configuration, a polyhedron which is isohedral has a dual polyhedron that is vertex-transitive. The Catalan solids, the bipyramids and the trapezohedra are all isohedral and they are the duals of the isogonal Archimedean solids, prisms and antiprisms, respectively. The Platonic solids, which are either self-dual or dual with another Platonic solid, are vertex, edge, a polyhedron which is isohedral and isogonal is said to be noble. A polyhedron is if it contains k faces within its symmetry fundamental domain. Similarly a k-isohedral tiling has k separate symmetry orbits, a monohedral polyhedron or monohedral tiling has congruent faces, as either direct or reflectively, which occur in one or more symmetry positions. An r-hedral polyhedra or tiling has r types of faces, a facet-transitive or isotopic figure is a n-dimensional polytopes or honeycomb, with its facets congruent and transitive. The dual of an isotope is an isogonal polytope, by definition, this isotopic property is common to the duals of the uniform polytopes. An isotopic 2-dimensional figure is isotoxal, an isotopic 3-dimensional figure is isohedral. An isotopic 4-dimensional figure is isochoric, edge-transitive Anisohedral tiling Peter R. Cromwell, Polyhedra, Cambridge University Press 1997, ISBN 0-521-55432-2, p.367 Transitivity Olshevsky, George. Archived from the original on 4 February 2007
22.
Quasiregular polyhedron
–
In geometry, a quasiregular polyhedron is a semiregular polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are edge-transitive and hence a step closer to regular polyhedra than the semiregular which are merely vertex-transitive, there are only two convex quasiregular polyhedra, the cuboctahedron and the icosidodecahedron. These forms representing a pair of a figure and its dual can be given a vertical Schläfli symbol or r to represent their containing the faces of both the regular and dual regular. A quasiregular polyhedron with this symbol will have a vertex configuration p. q. p. q, more generally, a quasiregular figure can have a vertex configuration r, representing r instances of the faces around the vertex. Tilings of the plane can also be quasiregular, specifically the trihexagonal tiling, other quasiregular tilings exist on the hyperbolic plane, like the triheptagonal tiling,2. Or more generally,2, with 1/p+1/q<1/2, a regular figure with Schläfli symbol can be quasiregular, with vertex configuration q/2, if q is even. The octahedron can be considered quasiregular as a tetratetrahedron,2, similarly the square tiling 2 can be considered quasiregular, colored as a checkerboard. Also the triangular tiling can have alternately colored triangle faces,3, Coxeter defines a quasiregular polyhedron as one having a Wythoff symbol in the form p | q r, and it is regular if q=2 or q=r. In this form it is known as the tetratetrahedron. The remaining convex polyhedra have an odd number of faces at each vertex so cannot be colored in a way that preserves edge transitivity. It has Coxeter-Dynkin diagram Each of these forms the core of a dual pair of regular polyhedra. The names of two of these clues to the associated dual pair, respectively the cube + octahedron. The octahedron is the core of a pair of tetrahedra. Each of these quasiregular polyhedra can be constructed by an operation on either regular parent, truncating the edges fully. This sequence continues as the tiling, vertex figure 2 - a quasiregular tiling based on the triangular tiling. But not everybody uses this terminology and these duals are transitive on their edges and faces, they are the edge-transitive Catalan solids. The convex ones are, in corresponding order as above, The rhombic dodecahedron, the rhombic triacontahedron, with two types of alternating vertices,20 with three rhombic faces, and 12 with five rhombic faces. In addition, by duality with the octahedron, the cube and their face configuration are of the form V3. n.3. n, and Coxeter-Dynkin diagram These three quasiregular duals are also characterised by having rhombic faces
23.
Uniform 4-polytope
–
In geometry, a uniform 4-polytope is a 4-polytope which is vertex-transitive and whose cells are uniform polyhedra, and faces are regular polygons. 47 non-prismatic convex uniform 4-polytopes, one set of convex prismatic forms. There are also a number of non-convex star forms. Regular star 4-polytopes 1852, Ludwig Schläfli also found 4 of the 10 regular star 4-polytopes, discounting 6 with cells or vertex figures and this construction enumerated 45 semiregular 4-polytopes. 1912, E. L. Elte independently expanded on Gossets list with the publication The Semiregular Polytopes of the Hyperspaces, polytopes with one or two types of semiregular facets, Convex uniform polytopes,1940, The search was expanded systematically by H. S. M. Coxeter in his publication Regular and Semi-Regular Polytopes,1966 Norman Johnson completes his Ph. D. dissertation The Theory of Uniform Polytopes and Honeycombs under advisor Coxeter, completes the basic theory of uniform polytopes for dimensions 4 and higher. 1986 Coxeter published a paper Regular and Semi-Regular Polytopes II which included analysis of the unique snub 24-cell structure, 1998-2000, The 4-polytopes were systematically named by Norman Johnson, and given by George Olshevskys online indexed enumeration. Johnson named the 4-polytopes as polychora, like polyhedra for 3-polytopes, from the Greek roots poly,2004, A proof that the Conway-Guy set is complete was published by Marco Möller in his dissertation, Vierdimensionale Archimedische Polytope. Möller reproduced Johnsons naming system in his listing,2008, The Symmetries of Things was published by John H. He used his own ijk-ambo naming scheme for the indexed ring permutations beyond truncation and bitruncation, nonregular uniform star 4-polytopes, 2000-2005, In a collaborative search, up to 2005 a total of 1845 uniform 4-polytopes had been identified by Jonathan Bowers and George Olshevsky. Regular 4-polytopes are a subset of the uniform 4-polytopes, which satisfy additional requirements, Regular 4-polytopes can be expressed with Schläfli symbol have cells of type, faces of type, edge figures, and vertex figures. The existence of a regular 4-polytope is constrained by the existence of the regular polyhedra which becomes cells, there are 64 convex uniform 4-polytopes, including the 6 regular convex 4-polytopes, and excluding the infinite sets of the duoprisms and the antiprismatic hyperprisms. 5 are polyhedral prisms based on the Platonic solids 13 are polyhedral prisms based on the Archimedean solids 9 are in the self-dual regular A4 group family,9 are in the self-dual regular F4 group family. 15 are in the regular B4 group family 15 are in the regular H4 group family,1 special snub form in the group family. 1 special non-Wythoffian 4-polytopes, the grand antiprism, TOTAL,68 −4 =64 These 64 uniform 4-polytopes are indexed below by George Olshevsky. Repeated symmetry forms are indexed in brackets, in addition to the 64 above, there are 2 infinite prismatic sets that generate all of the remaining convex forms, Set of uniform antiprismatic prisms - sr× - Polyhedral prisms of two antiprisms. Set of uniform duoprisms - × - A product of two polygons, the 5-cell has diploid pentachoric symmetry, of order 120, isomorphic to the permutations of five elements, because all pairs of vertices are related in the same way. Facets are given, grouped in their Coxeter diagram locations by removing specified nodes, there is one small index subgroup +, order 60, or its doubling +, order 120, defining a omnisnub 5-cell which is listed for completeness, but is not uniform
24.
Net (polyhedron)
–
In geometry the net of a polyhedron is an arrangement of edge-joined polygons in the plane which can be folded to become the faces of the polyhedron. Polyhedral nets are an aid to the study of polyhedra and solid geometry in general. Many different nets can exist for a polyhedron, depending on the choices of which edges are joined. Conversely, a given net may fold into more than one different convex polyhedron, depending on the angles at which its edges are folded, additionally, the same net may have multiple valid gluing patterns, leading to different folded polyhedra. Shephard asked whether every convex polyhedron has at least one net and this question, which is also known as Dürers conjecture, or Dürers unfolding problem, remains unanswered. There exist non-convex polyhedra that do not have nets, and it is possible to subdivide the faces of every convex polyhedron so that the set of subdivided faces has a net, in 2014 Mohammad Ghomi showed that every convex polyhedron admits a net after an affine transformation. The shortest path over the surface between two points on the surface of a polyhedron corresponds to a line on a suitable net for the subset of faces touched by the path. The net has to be such that the line is fully within it. Other candidates for the shortest path are through the surface of a third face adjacent to both, and corresponding nets can be used to find the shortest path in each category, the geometric concept of a net can be extended to higher dimensions. The above net of the tesseract, the hypercube, is used prominently in a painting by Salvador Dalí. However, it is known to be possible for every convex uniform 4-polytope, Paper model Cardboard modeling UV mapping Weisstein, Eric W. Net. Regular 4d Polytope Foldouts Editable Printable Polyhedral Nets with an Interactive 3D View Paper Models of Polyhedra Unfolder for Blender Unfolding package for Mathematica
25.
Four-dimensional space
–
For example, the volume of a rectangular box is found by measuring its length, width, and depth. More than two millennia ago Greek philosophers explored in detail the implications of this uniformity, culminating in Euclids Elements. However, it was not until recent times that a handful of insightful mathematical innovators generalized the concept of dimensions to more than three. The idea of adding a fourth dimension began with Joseph-Louis Lagrange in the mid 1700s, in 1880 Charles Howard Hinton popularized these insights in an essay titled What is the Fourth Dimension. Which was notable for explaining the concept of a cube by going through a step-by-step generalization of the properties of lines, squares. The simplest form of Hintons method is to draw two ordinary cubes separated by a distance, and then draw lines between their equivalent vertices. This form can be seen in the accompanying animation whenever it shows a smaller inner cube inside a larger outer cube, the eight lines connecting the vertices of the two cubes in that case represent a single direction in the unseen fourth dimension. Higher dimensional spaces have become one of the foundations for formally expressing modern mathematics and physics. Large parts of these topics could not exist in their current forms without the use of such spaces, calendar entries for example are usually 4D locations, such as a meeting at time t at the intersection of two streets on some building floor. In list form such a meeting place at the 4D location. Einsteins concept of spacetime uses such a 4D space, though it has a Minkowski structure that is a bit more complicated than Euclidean 4D space, when dimensional locations are given as ordered lists of numbers such as they are called vectors or n-tuples. It is only when such locations are linked together into more complicated shapes that the richness and geometric complexity of 4D. A hint of that complexity can be seen in the animation of one of simplest possible 4D objects. Lagrange wrote in his Mécanique analytique that mechanics can be viewed as operating in a four-dimensional space — three dimensions of space, and one of time, the possibility of geometry in higher dimensions, including four dimensions in particular, was thus established. An arithmetic of four dimensions called quaternions was defined by William Rowan Hamilton in 1843 and this associative algebra was the source of the science of vector analysis in three dimensions as recounted in A History of Vector Analysis. Soon after tessarines and coquaternions were introduced as other four-dimensional algebras over R, one of the first major expositors of the fourth dimension was Charles Howard Hinton, starting in 1880 with his essay What is the Fourth Dimension. Published in the Dublin University magazine and he coined the terms tesseract, ana and kata in his book A New Era of Thought, and introduced a method for visualising the fourth dimension using cubes in the book Fourth Dimension. Hintons ideas inspired a fantasy about a Church of the Fourth Dimension featured by Martin Gardner in his January 1962 Mathematical Games column in Scientific American, in 1886 Victor Schlegel described his method of visualizing four-dimensional objects with Schlegel diagrams
26.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
27.
Regular 4-polytope
–
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the analogs of the regular polyhedra in three dimensions and the regular polygons in two dimensions. Regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century, There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century, Schläfli discovered that there are precisely six such figures. Schläfli also found four of the regular star 4-polytopes and he skipped the remaining six because he would not allow forms that failed the Euler characteristic on cells or vertex figures. That excludes cells and vertex figures as, and, the six convex and ten star polytopes described are the only solutions to these constraints. There are four nonconvex Schläfli symbols that have cells and vertex figures, and pass the dihedral test. The regular convex 4-polytopes are the analogs of the Platonic solids in three dimensions and the convex regular polygons in two dimensions. Five of them may be thought of as close analogs of the Platonic solids, There is one additional figure, the 24-cell, which has no close three-dimensional equivalent. Each convex regular 4-polytope is bounded by a set of 3-dimensional cells which are all Platonic solids of the same type and these are fitted together along their respective faces in a regular fashion. The following tables lists some properties of the six convex regular 4-polytopes, the symmetry groups of these 4-polytopes are all Coxeter groups and given in the notation described in that article. The number following the name of the group is the order of the group, John Conway advocates the names simplex, orthoplex, tesseract, octaplex or polyoctahedron, dodecaplex or polydodecahedron, and tetraplex or polytetrahedron. The Euler characteristic for all 4-polytopes is zero, we have the 4-dimensional analog of Eulers polyhedral formula, the topology of any given 4-polytope is defined by its Betti numbers and torsion coefficients. The following table shows some 2-dimensional projections of these 4-polytopes, various other visualizations can be found in the external links below. The Coxeter-Dynkin diagram graphs are given below the Schläfli symbol. The Schläfli–Hess 4-polytopes are the set of 10 regular self-intersecting star polychora. They are named in honor of their discoverers, Ludwig Schläfli, each is represented by a Schläfli symbol in which one of the numbers is 5/2. They are thus analogous to the regular nonconvex Kepler–Poinsot polyhedra and their names given here were given by John Conway, extending Cayleys names for the Kepler–Poinsot polyhedra, along with stellated and great, he adds a grand modifier
28.
Hypercube
–
In geometry, a hypercube is an n-dimensional analogue of a square and a cube. A unit hypercubes longest diagonal in n-dimensions is equal to n, an n-dimensional hypercube is also called an n-cube or an n-dimensional cube. The term measure polytope is also used, notably in the work of H. S. M. Coxeter, the hypercube is the special case of a hyperrectangle. A unit hypercube is a hypercube whose side has one unit. Often, the hypercube whose corners are the 2n points in Rn with coordinates equal to 0 or 1 is called the unit hypercube, a hypercube can be defined by increasing the numbers of dimensions of a shape,0 – A point is a hypercube of dimension zero. 1 – If one moves this point one unit length, it will sweep out a line segment,2 – If one moves this line segment its length in a perpendicular direction from itself, it sweeps out a 2-dimensional square. 3 – If one moves the square one unit length in the perpendicular to the plane it lies on. 4 – If one moves the cube one unit length into the fourth dimension and this can be generalized to any number of dimensions. The 1-skeleton of a hypercube is a hypercube graph, a unit hypercube of n dimensions is the convex hull of the points given by all sign permutations of the Cartesian coordinates. It has a length of 1 and an n-dimensional volume of 1. An n-dimensional hypercube is also regarded as the convex hull of all sign permutations of the coordinates. This form is chosen due to ease of writing out the coordinates. Its edge length is 2, and its volume is 2n. Every n-cube of n >0 is composed of elements, or n-cubes of a dimension, on the -dimensional surface on the parent hypercube. A side is any element of -dimension of the parent hypercube, a hypercube of dimension n has 2n sides. The number of vertices of a hypercube is 2 n, the number of m-dimensional hypercubes on the boundary of an n-cube is E m, n =2 n − m, where = n. m. and n. denotes the factorial of n. For example, the boundary of a 4-cube contains 8 cubes,24 squares,32 lines and 16 vertices and this identity can be proved by combinatorial arguments, each of the 2 n vertices defines a vertex in a m-dimensional boundary. There are ways of choosing which lines that defines the subspace that the boundary is in, but, each side is counted 2 m times since it has that many vertices, we need to divide with this number
29.
John Horton Conway
–
John Horton Conway FRS is an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He has also contributed to many branches of mathematics, notably the invention of the cellular automaton called the Game of Life. Conway is currently Professor Emeritus of Mathematics at Princeton University in New Jersey, Conway was born in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at an early age, his mother has recalled that he could recite the powers of two when he was four years old. By the age of eleven his ambition was to become a mathematician, after leaving secondary school, Conway entered Gonville and Caius College, Cambridge to study mathematics. Conway, who was a terribly introverted adolescent in school, interpreted his admission to Cambridge as an opportunity to transform himself into a new person and he was awarded his Bachelor of Arts degree in 1959 and began to undertake research in number theory supervised by Harold Davenport. Having solved the problem posed by Davenport on writing numbers as the sums of fifth powers. It appears that his interest in games began during his years studying the Cambridge Mathematical Tripos and he was awarded his doctorate in 1964 and was appointed as College Fellow and Lecturer in Mathematics at the University of Cambridge. After leaving Cambridge in 1986, he took up the appointment to the John von Neumann Chair of Mathematics at Princeton University, Conway is especially known for the invention of the Game of Life, one of the early examples of a cellular automaton. His initial experiments in that field were done with pen and paper, since the game was introduced by Martin Gardner in Scientific American in 1970, it has spawned hundreds of computer programs, web sites, and articles. It is a staple of recreational mathematics, there is an extensive wiki devoted to curating and cataloging the various aspects of the game. From the earliest days it has been a favorite in computer labs, at times Conway has said he hates the game of life–largely because it has come to overshadow some of the other deeper and more important things he has done. Nevertheless, the game did help launch a new branch of mathematics, the Game of Life is now known to be Turing complete. Conways career is intertwined with mathematics popularizer and Scientific American columnist Martin Gardner, when Gardner featured Conways Game of Life in his Mathematical Games column in October 1970, it became the most widely read of all his columns and made Conway an instant celebrity. Gardner and Conway had first corresponded in the late 1950s, for instance, he discussed Conways game of Sprouts, Hackenbush, and his angel and devil problem. In the September 1976 column he reviewed Conways book On Numbers and Games, Conway is widely known for his contributions to combinatorial game theory, a theory of partisan games. This he developed with Elwyn Berlekamp and Richard Guy, and with them also co-authored the book Winning Ways for your Mathematical Plays and he also wrote the book On Numbers and Games which lays out the mathematical foundations of CGT. He is also one of the inventors of sprouts, as well as philosophers football and he developed detailed analyses of many other games and puzzles, such as the Soma cube, peg solitaire, and Conways soldiers
30.
Orthant
–
In geometry, an orthant or hyperoctant is the analogue in n-dimensional Euclidean space of a quadrant in the plane or an octant in three dimensions. In general an orthant in n-dimensions can be considered the intersection of n mutually orthogonal half-spaces, by independent selections of half-space signs, there are 2n orthants in n-dimensional space. More specifically, an orthant in Rn is a subset defined by constraining each Cartesian coordinate to be nonnegative or nonpositive. Such a subset is defined by a system of inequalities, ε1x1 ≥0 ε2x2 ≥0 · · · εnxn ≥0, where each εi is +1 or −1. Similarly, an orthant in Rn is a subset defined by a system of strict inequalities ε1x1 >0 ε2x2 >0 · · · εnxn >0. By dimension, In one dimension, an orthant is a ray, in two dimensions, an orthant is a quadrant. In three dimensions, an orthant is an octant, john Conway defined the term n-orthoplex from orthant complex as a regular polytope in n-dimensions with 2n simplex facets, one per orthant. Cross polytope - a family of polytopes in n-dimensions which can be constructed with one simplex facets in each orthant space. Measure polytope - a family of polytopes in n-dimensions which can be constructed with one vertex in each orthant space. Orthotope - Generalization of a rectangle in n-dimensions, with one vertex in each orthant, the facts on file, Geometry handbook, Catherine A. Gorini,2003, ISBN 0-8160-4875-4, p.113
31.
Regular octahedron
–
In geometry, an octahedron is a polyhedron with eight faces, twelve edges, and six vertices. A regular octahedron is a Platonic solid composed of eight equilateral triangles, a regular octahedron is the dual polyhedron of a cube. It is a square bipyramid in any of three orthogonal orientations and it is also a triangular antiprism in any of four orientations. An octahedron is the case of the more general concept of a cross polytope. A regular octahedron is a 3-ball in the Manhattan metric, the second and third correspond to the B2 and A2 Coxeter planes. The octahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. An octahedron with edge length √2 can be placed with its center at the origin and its vertices on the coordinate axes, the Cartesian coordinates of the vertices are then. In an x–y–z Cartesian coordinate system, the octahedron with center coordinates, additionally the inertia tensor of the stretched octahedron is I =. These reduce to the equations for the regular octahedron when x m = y m = z m = a 22, the interior of the compound of two dual tetrahedra is an octahedron, and this compound, called the stella octangula, is its first and only stellation. Correspondingly, an octahedron is the result of cutting off from a regular tetrahedron. One can also divide the edges of an octahedron in the ratio of the mean to define the vertices of an icosahedron. There are five octahedra that define any given icosahedron in this fashion, octahedra and tetrahedra can be alternated to form a vertex, edge, and face-uniform tessellation of space, called the octet truss by Buckminster Fuller. This is the only such tiling save the regular tessellation of cubes, another is a tessellation of octahedra and cuboctahedra. The octahedron is unique among the Platonic solids in having a number of faces meeting at each vertex. Consequently, it is the member of that group to possess mirror planes that do not pass through any of the faces. Using the standard nomenclature for Johnson solids, an octahedron would be called a square bipyramid, truncation of two opposite vertices results in a square bifrustum. The octahedron is 4-connected, meaning that it takes the removal of four vertices to disconnect the remaining vertices and it is one of only four 4-connected simplicial well-covered polyhedra, meaning that all of the maximal independent sets of its vertices have the same size
32.
Edge figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face
33.
Duoantiprism
–
In geometry of 4 dimensions or higher, a duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an n-polytope and an m-polytope is an -polytope, the lowest-dimensional duoprisms exist in 4-dimensional space as 4-polytopes being the Cartesian product of two polygons in 2-dimensional Euclidean space. More precisely, it is the set of points, P1 × P2 = where P1, such a duoprism is convex if both bases are convex, and is bounded by prismatic cells. Four-dimensional duoprisms are considered to be prismatic 4-polytopes, a duoprism constructed from two regular polygons of the same edge length is a uniform duoprism. An alternative, more concise way of specifying a particular duoprism is by prefixing with numbers denoting the base polygons, for example,3, other alternative names, q-gonal-p-gonal prism q-gonal-p-gonal double prism q-gonal-p-gonal hyperprism The term duoprism is coined by George Olshevsky, shortened from double prism. John Horton Conway proposed a similar name proprism for product prism, the duoprisms are proprisms formed from exactly two polytopes. A 4-dimensional uniform duoprism is created by the product of a regular n-sided polygon and it is bounded by n m-gonal prisms and m n-gonal prisms. For example, the Cartesian product of a triangle and a hexagon is a duoprism bounded by 6 triangular prisms and 3 hexagonal prisms, when m and n are identical, the resulting duoprism is bounded by 2n identical n-gonal prisms. For example, the Cartesian product of two triangles is a duoprism bounded by 6 triangular prisms, when m and n are identically 4, the resulting duoprism is bounded by 8 square prisms, and is identical to the tesseract. The m-gonal prisms are attached to each other via their m-gonal faces, similarly, the n-gonal prisms are attached to each other via their n-gonal faces, and form a second loop perpendicular to the first. These two loops are attached to each other via their square faces, and are mutually perpendicular, as m and n approach infinity, the corresponding duoprisms approach the duocylinder. As such, duoprisms are useful as non-quadric approximations of the duocylinder, a cell-centered perspective projection makes a duoprism look like a torus, with two sets of orthogonal cells, p-gonal and q-gonal prisms. The p-q duoprisms are identical to the q-p duoprisms, but look different in these projections because they are projected in the center of different cells, vertex-centered orthogonal projections of p-p duoprisms project into symmetry for odd degrees, and for even degrees. There are n vertices projected into the center, for 4,4, it represents the A3 Coxeter plane of the tesseract. The 5,5 projection is identical to the 3D rhombic triacontahedron, the regular skew polyhedron, exists in 4-space as the n2 square faces of a n-n duoprism, using all 2n2 edges and n2 vertices. The 2n n-gonal faces can be seen as removed, like the antiprisms as alternated prisms, there is a set of 4-dimensional duoantiprisms, 4-polytopes that can be created by an alternation operation applied to a duoprism. The alternated vertices create nonregular tetrahedral cells, except for the special case, the 16-cell is the only convex uniform duoantiprism. The duoprisms, t0,1,2,3, can be alternated into, ht0,1,2,3, the duoantiprisms, which cannot be made uniform in general
34.
Coxeter notation
–
The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson. For Coxeter groups defined by pure reflections, there is a correspondence between the bracket notation and Coxeter-Dynkin diagram. The numbers in the notation represent the mirror reflection orders in the branches of the Coxeter diagram. It uses the same simplification, suppressing 2s between orthogonal mirrors, the Coxeter notation is simplified with exponents to represent the number of branches in a row for linear diagram. So the An group is represented by, to imply n nodes connected by n-1 order-3 branches, example A2 = = or represents diagrams or. Coxeter initially represented bifurcating diagrams with vertical positioning of numbers, but later abbreviated with an exponent notation, like, Coxeter allowed for zeros as special cases to fit the An family, like A3 = = = =, like = =. Coxeter groups formed by cyclic diagrams are represented by parenthesese inside of brackets, if the branch orders are equal, they can be grouped as an exponent as the length the cycle in brackets, like =, representing Coxeter diagram or. More complicated looping diagrams can also be expressed with care, the paracompact complete graph diagram or, is represented as with the superscript as the symmetry of its regular tetrahedron coxeter diagram. The Coxeter diagram usually leaves order-2 branches undrawn, but the bracket notation includes an explicit 2 to connect the subgraphs, so the Coxeter diagram = A2×A2 = 2A2 can be represented by × =2 =. For the affine and hyperbolic groups, the subscript is one less than the number of nodes in each case, Coxeters notation represents rotational/translational symmetry by adding a + superscript operator outside the brackets which cuts the order of the group in half. This is called a direct subgroup because what remains are only direct isometries without reflective symmetry, + operators can also be applied inside of the brackets, and creates semidirect subgroups that include both reflective and nonreflective generators. Semidirect subgroups can only apply to Coxeter group subgroups that have even order branches next to it, the subgroup index is 2n for n + operators. So the snub cube, has symmetry +, and the tetrahedron, has symmetry. Johnson extends the + operator to work with a placeholder 1 nodes, in general this operation only applies to mirrors bounded by all even-order branches. The 1 represents a mirror so can be seen as, or, like diagram or, the effect of a mirror removal is to duplicate connecting nodes, which can be seen in the Coxeter diagrams, =, or in bracket notation, = =. Each of these mirrors can be removed so h = = = and this can be shown in a Coxeter diagram by adding a + symbol above the node, = =. If both mirrors are removed, a subgroup is generated, with the branch order becoming a gyration point of half the order, q = = +. For example, = = = ×, order 4. = +, the opposite to halving is doubling which adds a mirror, bisecting a fundamental domain, and doubling the group order
35.
Octahedral pyramid
–
In 4-dimensional geometry, the octahedral pyramid is bounded by one octahedron on the base and 8 triangular pyramid cells which meet at the apex. Since an octahedron has a divided by edge length less than one. The regular 16-cell has octahedral pyramids around every vertex, with the passing through the center of the 16-cell. The octahedral pyramid is the figure for a truncated 5-orthoplex. The graph of the pyramid is the only possible minimal counterexample to Negamis conjecture. The dual to the pyramid is a cubic pyramid, seen as an cubic base. The square-pyramidal pyramid, ∨, is a octahedral pyramid. It has a pyramid base, and 4 tetrahedrons along with another one more square pyramid meeting at the apex. It can also be seen in an edge-centered projection as a bipyramid with four tetrahedra wrapped around the common edge. If the height of the two apexes are the same, it can be given a higher symmetry name ∨ = ∨, the square-pyramidal pyramid can be distorted into a rectangular-pyramidal pyramid, ∨ or a rhombic-pyramidal pyramid, ∨, or other lower symmetry forms. The square-pyramidal pyramid exists as a figure in uniform polytopes of the form, including the bitruncated 5-orthoplex. Archived from the original on 4 February 2007, richard Klitzing, Axial-Symmetrical Edge Facetings of Uniform Polyhedra
36.
Simplicial complex
–
In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts. Simplicial complexes should not be confused with the abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a complex is an abstract simplicial complex. A simplicial complex K is a set of simplices that satisfies the conditions,1. Any face of a simplex from K is also in K.2, the intersection of any two simplices σ1, σ2 ∈ K is either ∅ or a face of both σ1 and σ2. Note that the empty set is a face of every simplex, see also the definition of an abstract simplicial complex, which loosely speaking is a simplicial complex without an associated geometry. A simplicial k-complex K is a complex where the largest dimension of any simplex in K equals k. For instance, a simplicial 2-complex must contain at least one triangle, a pure or homogeneous simplicial k-complex K is a simplicial complex where every simplex of dimension less than k is a face of some simplex σ ∈ K of dimension exactly k. Informally, a pure 1-complex looks like its made of a bunch of lines, an example of a non-homogeneous complex is a triangle with a line segment attached to one of its vertices. A facet is any simplex in a complex that is not a face of any larger simplex, a pure simplicial complex can be thought of as a complex where all facets have the same dimension. Sometimes the term face is used to refer to a simplex of a complex, for a simplicial complex embedded in a k-dimensional space, the k-faces are sometimes referred to as its cells. The term cell is used in a broader sense to denote a set homeomorphic to a simplex. The underlying space, sometimes called the carrier of a complex is the union of its simplices. Let K be a complex and let S be a collection of simplices in K. The closure of S is the smallest simplicial subcomplex of K that contains each simplex in S. Cl S is obtained by adding to S each face of every simplex in S. The star of S is the union of the stars of each simplex in S, for a single simplex s, the star of s is the set of simplices having a face in s. The link of S equals Cl St S − St Cl S and it is the closed star of S minus the stars of all faces of S. In algebraic topology, simplicial complexes are useful for concrete calculations
37.
Stereographic projection
–
In geometry, the stereographic projection is a particular mapping that projects a sphere onto a plane. The projection is defined on the sphere, except at one point. Where it is defined, the mapping is smooth and bijective and it is conformal, meaning that it preserves angles. It is neither isometric nor area-preserving, that is, it preserves neither distances nor the areas of figures, intuitively, then, the stereographic projection is a way of picturing the sphere as the plane, with some inevitable compromises. In practice, the projection is carried out by computer or by using a special kind of graph paper called a stereographic net, shortened to stereonet. The stereographic projection was known to Hipparchus, Ptolemy and probably earlier to the Egyptians and it was originally known as the planisphere projection. Planisphaerium by Ptolemy is the oldest surviving document that describes it, one of its most important uses was the representation of celestial charts. The term planisphere is still used to refer to such charts, in the 16th and 17th century, the equatorial aspect of the stereographic projection was commonly used for maps of the Eastern and Western Hemispheres. It is believed that already the map created in 1507 by Gualterius Lud was in stereographic projection, as were later the maps of Jean Roze, Rumold Mercator, in star charts, even this equatorial aspect had been utilised already by the ancient astronomers like Ptolemy. François dAguilon gave the stereographic projection its current name in his 1613 work Opticorum libri sex philosophis juxta ac mathematicis utiles, in 1695, Edmond Halley, motivated by his interest in star charts, published the first mathematical proof that this map is conformal. He used the recently established tools of calculus, invented by his friend Isaac Newton and this section focuses on the projection of the unit sphere from the north pole onto the plane through the equator. Other formulations are treated in later sections, the unit sphere in three-dimensional space R3 is the set of points such that x2 + y2 + z2 =1. Let N = be the pole, and let M be the rest of the sphere. The plane z =0 runs through the center of the sphere, for any point P on M, there is a unique line through N and P, and this line intersects the plane z =0 in exactly one point P′. Define the stereographic projection of P to be this point P′ in the plane, in Cartesian coordinates on the sphere and on the plane, the projection and its inverse are given by the formulas =, =. In spherical coordinates on the sphere and polar coordinates on the plane, here, φ is understood to have value π when R =0. Also, there are ways to rewrite these formulas using trigonometric identities. In cylindrical coordinates on the sphere and polar coordinates on the plane, the projection is not defined at the projection point N =
38.
Rotations in 4-dimensional Euclidean space
–
In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO. The name comes from the fact that it is the orthogonal group of order 4. In this article rotation means rotational displacement, for the sake of uniqueness rotation angles are assumed to be in the segment except where mentioned or clearly implied by the context otherwise. A fixed plane is a plane for which every vector in the plane is unchanged after the rotation, an invariant plane is a plane for which every vector in the plane, although it may be affected by the rotation, remains in the plane after the rotation. Four-dimensional rotations are of two types, simple rotations and double rotations, a simple rotation R about a rotation centre O leaves an entire plane A through O fixed. Every plane B that is orthogonal to A intersects A in a certain point P. Each such point P is the centre of the 2D rotation induced by R in B, all these 2D rotations have the same rotation angle α. Half-lines from O in the axis-plane A are not displaced, half-lines from O orthogonal to A are displaced through α, all other half-lines are displaced through an angle < α. For each rotation R of 4-space, there is at least one pair of orthogonal 2-planes A and B each of which are invariant, hence R operating on either of these planes produces an ordinary rotation of that plane. For almost all R, the rotation angles α in plane A and β in plane B — both assumed to be nonzero — are different, the unequal rotation angles α and β satisfying -π < α, β < π are almost* uniquely determined by R. Assuming that 4-space is oriented, then the orientations of the 2-planes A and B can be consistent with this orientation in two ways. If the rotation angles are unequal, R is sometimes termed a double rotation, *Assuming that 4-space is oriented, then an orientation for each of the 2-planes A and B can be chosen to be consistent with this orientation of 4-space in two equally valid ways. If the angles from one choice of orientations of A and B are. If the rotation angles of a rotation are equal then there are infinitely many invariant planes instead of just two, and all half-lines from O are displaced through the same angle. Such rotations are called isoclinic or equiangular rotations, or Clifford displacements, beware, not all planes through O are invariant under isoclinic rotations, only planes that are spanned by a half-line and the corresponding displaced half-line are invariant. Assuming that an orientation has been chosen for 4-dimensional space. Now assume that only the rotation angle α is specified, then there are in general four isoclinic rotations in planes OUX and OYZ with rotation angle α, depending on the rotation senses in OUX and OYZ. We make the convention that the senses from OU to OX
39.
Wythoff construction
–
In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoffs kaleidoscopic construction and it is based on the idea of tiling a sphere, with spherical triangles – see Schwarz triangles. This construction arranges three mirrors at the sides of a triangle, like in a kaleidoscope, however, different from a kaleidoscope, the mirrors are not parallel, but intersect at a single point. They therefore enclose a spherical triangle on the surface of any sphere centered on that point, if the angles of the spherical triangle are chosen appropriately, the triangles will tile the sphere, one or more times. If one places a vertex at a point inside the spherical triangle enclosed by the mirrors. For a spherical triangle ABC we have four possibilities which will produce a uniform polyhedron and this produces a polyhedron with Wythoff symbol a|b c, where a equals π divided by the angle of the triangle at A, and similarly for b and c. A vertex is placed at a point on line AB so that it bisects the angle at C and this produces a polyhedron with Wythoff symbol a b|c. A vertex is placed so that it is on the incenter of ABC and this produces a polyhedron with Wythoff symbol a b c|. The vertex is at a point such that, when it is rotated around any of the corners by twice the angle at that point. Only even-numbered reflections of the vertex are used. The polyhedron has the Wythoff symbol |a b c, the process in general also applies for higher-dimensional regular polytopes, including the 4-dimensional uniform 4-polytopes. Uniform polytopes that cannot be created through a Wythoff mirror construction are called non-Wythoffian and they generally can be derived from Wythoffian forms either by alternation or by insertion of alternating layers of partial figures. Both of these types of figures will contain rotational symmetry, sometimes snub forms are considered Wythoffian, even though they can only be constructed by the alternation of omnitruncated forms. Wythoff symbol - a symbol for the Wythoff construction of uniform polyhedra, coxeter-Dynkin diagram - a generalized symbol for the Wythoff construction of uniform polytopes and honeycombs. Coxeter Regular Polytopes, Third edition, Dover edition, ISBN 0-486-61480-8 Coxeter The Beauty of Geometry, Twelve Essays, Dover Publications,1999, ISBN 0-486-40919-8 HarEl, Z. W. A. Wythoff, A relation between the polytopes of the C600-family, Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings of the Section of Sciences,20 966–970, archived from the original on 4 February 2007. Displays Uniform Polyhedra using Wythoffs construction method Description of Wythoff Constructions Jenn, software that generates views of polyhedra and polychora from symmetry groups
40.
Coxeter element
–
In mathematics, the Coxeter number h is the order of a Coxeter element of an irreducible Coxeter group. Note that this assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple classes of Coxeter elements. There are many different ways to define the Coxeter number h of a root system. A Coxeter element is a product of all simple reflections, the product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order. The Coxeter number is the number of roots divided by the rank, the number of reflections in the Coxeter group is half the number of roots. The Coxeter number is the order of any Coxeter element, if the highest root is ∑miαi for simple roots αi, then the Coxeter number is 1 + ∑mi The dimension of the corresponding Lie algebra is n, where n is the rank and h is the Coxeter number. The Coxeter number is the highest degree of an invariant of the Coxeter group acting on polynomials. Notice that if m is a degree of a fundamental invariant then so is h +2 − m, the eigenvalues of a Coxeter element are the numbers e2πi/h as m runs through the degrees of the fundamental invariants. Since this starts with m =2, these include the primitive hth root of unity, ζh = e2πi/h, an example, has h=30, so 64*30/g =12 -3 -6 -5 + 4/3 + 4/5 = 2/15, so g = 1920*15/2= 960*15 =14400. Coxeter elements of A n −1 ≅ S n, considered as the group on n elements, are n-cycles, for simple reflections the adjacent transpositions, …. The dihedral group Dihm is generated by two reflections that form an angle of 2 π /2 m, and thus their product is a rotation by 2 π / m. For a given Coxeter element w, there is a unique plane P on which w acts by rotation by 2π/h and this is called the Coxeter plane and is the plane on which P has eigenvalues e2πi/h and e−2πi/h = e2πi/h. This plane was first systematically studied in, and subsequently used in to provide uniform proofs about properties of Coxeter elements, for polytopes, a vertex may map to zero, as depicted below. Projections onto the Coxeter plane are depicted below for the Platonic solids, in three dimensions, the symmetry of a regular polyhedron, with one directed petrie polygon marked, defined as a composite of 3 reflections, has rotoinversion symmetry Sh, order h. Adding a mirror, the symmetry can be doubled to symmetry, Dhd. In orthogonal 2D projection, this becomes dihedral symmetry, Dihh, in four dimension, the symmetry of a regular polychoron, with one directed petrie polygon marked is a double rotation, defined as a composite of 4 reflections, with symmetry +1/h, order h. In five dimension, the symmetry of a regular polyteron, with one directed petrie polygon marked, is represented by the composite of 5 reflections
41.
Dihedral group
–
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of groups, and they play an important role in group theory, geometry. The notation for the group of order n differs in geometry. In geometry, Dn or Dihn refers to the symmetries of the n-gon, in abstract algebra, Dn refers to the dihedral group of order n. The geometric convention is used in this article, a regular polygon with n sides has 2 n different symmetries, n rotational symmetries and n reflection symmetries. Usually, we take n ≥3 here. The associated rotations and reflections make up the dihedral group D n, if n is odd, each axis of symmetry connects the midpoint of one side to the opposite vertex. If n is even, there are n/2 axes of symmetry connecting the midpoints of opposite sides, in either case, there are n axes of symmetry and 2 n elements in the symmetry group. Reflecting in one axis of symmetry followed by reflecting in another axis of symmetry produces a rotation through twice the angle between the axes, as with any geometric object, the composition of two symmetries of a regular polygon is again a symmetry of this object. With composition of symmetries to produce another as the binary operation, the following Cayley table shows the effect of composition in the group D3. R0 denotes the identity, r1 and r2 denote counterclockwise rotations by 120° and 240° respectively, for example, s2s1 = r1, because the reflection s1 followed by the reflection s2 results in a rotation of 120°. The order of elements denoting the composition is right to left, the composition operation is not commutative. In all cases, addition and subtraction of subscripts are to be performed using modular arithmetic with modulus n, if we center the regular polygon at the origin, then elements of the dihedral group act as linear transformations of the plane. This lets us represent elements of Dn as matrices, with composition being matrix multiplication and this is an example of a group representation. For example, the elements of the group D4 can be represented by the eight matrices. In general, the matrices for elements of Dn have the following form, rk is a rotation matrix, expressing a counterclockwise rotation through an angle of 2πk/n. Sk is a reflection across a line makes an angle of πk/n with the x-axis. Further equivalent definitions of Dn are, D1 is isomorphic to Z2, D2 is isomorphic to K4, the Klein four-group. D1 and D2 are exceptional in that, D1 and D2 are the only abelian dihedral groups, Dn is a subgroup of the symmetric group Sn for n ≥3
42.
Tessellation
–
A tessellation of a flat surface is the tiling of a plane using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellations can be generalized to higher dimensions and a variety of geometries, a periodic tiling has a repeating pattern. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups, a tiling that lacks a repeating pattern is called non-periodic. An aperiodic tiling uses a set of tile shapes that cannot form a repeating pattern. In the geometry of higher dimensions, a space-filling or honeycomb is called a tessellation of space. A real physical tessellation is a made of materials such as cemented ceramic squares or hexagons. Such tilings may be decorative patterns, or may have such as providing durable and water-resistant pavement. Historically, tessellations were used in Ancient Rome and in Islamic art such as in the decorative geometric tiling of the Alhambra palace, in the twentieth century, the work of M. C. Escher often made use of tessellations, both in ordinary Euclidean geometry and in geometry, for artistic effect. Tessellations are sometimes employed for decorative effect in quilting, Tessellations form a class of patterns in nature, for example in the arrays of hexagonal cells found in honeycombs. Tessellations were used by the Sumerians in building wall decorations formed by patterns of clay tiles, decorative mosaic tilings made of small squared blocks called tesserae were widely employed in classical antiquity, sometimes displaying geometric patterns. In 1619 Johannes Kepler made a documented study of tessellations. He wrote about regular and semiregular tessellations in his Harmonices Mundi, he was possibly the first to explore and to explain the structures of honeycomb. Some two hundred years later in 1891, the Russian crystallographer Yevgraf Fyodorov proved that every periodic tiling of the features one of seventeen different groups of isometries. Fyodorovs work marked the beginning of the mathematical study of tessellations. Other prominent contributors include Shubnikov and Belov, and Heinrich Heesch, in Latin, tessella is a small cubical piece of clay, stone or glass used to make mosaics. The word tessella means small square and it corresponds to the everyday term tiling, which refers to applications of tessellations, often made of glazed clay. Tessellation or tiling in two dimensions is a topic in geometry that studies how shapes, known as tiles, can be arranged to fill a plane without any gaps, according to a given set of rules
43.
Euclidean space
–
In geometry, Euclidean space encompasses the two-dimensional Euclidean plane, the three-dimensional space of Euclidean geometry, and certain other spaces. It is named after the Ancient Greek mathematician Euclid of Alexandria, the term Euclidean distinguishes these spaces from other types of spaces considered in modern geometry. Euclidean spaces also generalize to higher dimensions, classical Greek geometry defined the Euclidean plane and Euclidean three-dimensional space using certain postulates, while the other properties of these spaces were deduced as theorems. Geometric constructions are used to define rational numbers. It means that points of the space are specified with collections of real numbers and this approach brings the tools of algebra and calculus to bear on questions of geometry and has the advantage that it generalizes easily to Euclidean spaces of more than three dimensions. From the modern viewpoint, there is only one Euclidean space of each dimension. With Cartesian coordinates it is modelled by the coordinate space of the same dimension. In one dimension, this is the line, in two dimensions, it is the Cartesian plane, and in higher dimensions it is a coordinate space with three or more real number coordinates. One way to think of the Euclidean plane is as a set of points satisfying certain relationships, expressible in terms of distance, for example, there are two fundamental operations on the plane. One is translation, which means a shifting of the plane so that point is shifted in the same direction. The other is rotation about a point in the plane. In order to all of this mathematically precise, the theory must clearly define the notions of distance, angle, translation. Even when used in theories, Euclidean space is an abstraction detached from actual physical locations, specific reference frames, measurement instruments. The standard way to such space, as carried out in the remainder of this article, is to define the Euclidean plane as a two-dimensional real vector space equipped with an inner product. The reason for working with vector spaces instead of Rn is that it is often preferable to work in a coordinate-free manner. Once the Euclidean plane has been described in language, it is actually a simple matter to extend its concept to arbitrary dimensions. For the most part, the vocabulary, formulae, and calculations are not made any more difficult by the presence of more dimensions. Intuitively, the distinction says merely that there is no choice of where the origin should go in the space