Parsec
The parsec is a unit of length used to measure large distances to astronomical objects outside the Solar System. A parsec is defined as the distance at which one astronomical unit subtends an angle of one arcsecond, which corresponds to 648000/π astronomical units. One parsec is equal to 31 trillion kilometres or 19 trillion miles; the nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun. Most of the stars visible to the unaided eye in the night sky are within 500 parsecs of the Sun; the parsec unit was first suggested in 1913 by the British astronomer Herbert Hall Turner. Named as a portmanteau of the parallax of one arcsecond, it was defined to make calculations of astronomical distances from only their raw observational data quick and easy for astronomers. For this reason, it is the unit preferred in astronomy and astrophysics, though the light-year remains prominent in popular science texts and common usage. Although parsecs are used for the shorter distances within the Milky Way, multiples of parsecs are required for the larger scales in the universe, including kiloparsecs for the more distant objects within and around the Milky Way, megaparsecs for mid-distance galaxies, gigaparsecs for many quasars and the most distant galaxies.
In August 2015, the IAU passed Resolution B2, which, as part of the definition of a standardized absolute and apparent bolometric magnitude scale, mentioned an existing explicit definition of the parsec as 648000/π astronomical units, or 3.08567758149137×1016 metres. This corresponds to the small-angle definition of the parsec found in many contemporary astronomical references; the parsec is defined as being equal to the length of the longer leg of an elongated imaginary right triangle in space. The two dimensions on which this triangle is based are its shorter leg, of length one astronomical unit, the subtended angle of the vertex opposite that leg, measuring one arc second. Applying the rules of trigonometry to these two values, the unit length of the other leg of the triangle can be derived. One of the oldest methods used by astronomers to calculate the distance to a star is to record the difference in angle between two measurements of the position of the star in the sky; the first measurement is taken from the Earth on one side of the Sun, the second is taken half a year when the Earth is on the opposite side of the Sun.
The distance between the two positions of the Earth when the two measurements were taken is twice the distance between the Earth and the Sun. The difference in angle between the two measurements is twice the parallax angle, formed by lines from the Sun and Earth to the star at the distant vertex; the distance to the star could be calculated using trigonometry. The first successful published direct measurements of an object at interstellar distances were undertaken by German astronomer Friedrich Wilhelm Bessel in 1838, who used this approach to calculate the 3.5-parsec distance of 61 Cygni. The parallax of a star is defined as half of the angular distance that a star appears to move relative to the celestial sphere as Earth orbits the Sun. Equivalently, it is the subtended angle, from that star's perspective, of the semimajor axis of the Earth's orbit; the star, the Sun and the Earth form the corners of an imaginary right triangle in space: the right angle is the corner at the Sun, the corner at the star is the parallax angle.
The length of the opposite side to the parallax angle is the distance from the Earth to the Sun (defined as one astronomical unit, the length of the adjacent side gives the distance from the sun to the star. Therefore, given a measurement of the parallax angle, along with the rules of trigonometry, the distance from the Sun to the star can be found. A parsec is defined as the length of the side adjacent to the vertex occupied by a star whose parallax angle is one arcsecond; the use of the parsec as a unit of distance follows from Bessel's method, because the distance in parsecs can be computed as the reciprocal of the parallax angle in arcseconds. No trigonometric functions are required in this relationship because the small angles involved mean that the approximate solution of the skinny triangle can be applied. Though it may have been used before, the term parsec was first mentioned in an astronomical publication in 1913. Astronomer Royal Frank Watson Dyson expressed his concern for the need of a name for that unit of distance.
He proposed the name astron, but mentioned that Carl Charlier had suggested siriometer and Herbert Hall Turner had proposed parsec. It was Turner's proposal. In the diagram above, S represents the Sun, E the Earth at one point in its orbit, thus the distance ES is one astronomical unit. The angle SDE is one arcsecond so by definition D is a point in space at a distance of one parsec from the Sun. Through trigonometry, the distance SD is calculated as follows: S D = E S tan 1 ″ S D ≈ E S 1 ″ = 1 au 1 60 × 60 × π
Washington Double Star Catalog
The Washington Double Star Catalog, or WDS, is a catalog of double stars, maintained at the United States Naval Observatory. The catalog contains positions, proper motions and spectral types and has entries for 141,743 pairs of double stars; the catalog includes multiple stars. In general, a multiple star with n components will be represented by entries in the catalog for n-1 pairs of stars; the database used to construct the WDS originated at Lick Observatory, where it was used to construct the Index Catalog of Visual Double Stars, published in 1963. In 1965, under the initiative of Charles Worley, it was transferred to the Naval Observatory; the catalog has since been augmented by a large number of measurements from the Hipparcos and Tycho catalogues and results from speckle interferometry, as well as other sources. Aitken Double Star Catalogue Burnham Double Star Catalogue The WDS at the US Naval Observatory The Washington Double Star Catalog at VizieR StelleDoppie interface to the WDS
Stellar parallax
Stellar parallax is the apparent shift of position of any nearby star against the background of distant objects. Created by the different orbital positions of Earth, the small observed shift is largest at time intervals of about six months, when Earth arrives at opposite sides of the Sun in its orbit, giving a baseline distance of about two astronomical units between observations; the parallax itself is considered to be half of this maximum, about equivalent to the observational shift that would occur due to the different positions of Earth and the Sun, a baseline of one astronomical unit. Stellar parallax is so difficult to detect that its existence was the subject of much debate in astronomy for hundreds of years, it was first observed in 1806 by Giuseppe Calandrelli who reported parallax in α-Lyrae in his work "Osservazione e riflessione sulla parallasse annua dall’alfa della Lira". In 1838 Friedrich Bessel made the first successful parallax measurement, for the star 61 Cygni, using a Fraunhofer heliometer at Königsberg Observatory.
Once a star's parallax is known, its distance from Earth can be computed trigonometrically. But the more distant an object is, the smaller its parallax. With 21st-century techniques in astrometry, the limits of accurate measurement make distances farther away than about 100 parsecs too approximate to be useful when obtained by this technique; this limits the applicability of parallax as a measurement of distance to objects that are close on a galactic scale. Other techniques, such as spectral red-shift, are required to measure the distance of more remote objects. Stellar parallax measures are given in the tiny units of arcseconds, or in thousandths of arcseconds; the distance unit parsec is defined as the length of the leg of a right triangle adjacent to the angle of one arcsecond at one vertex, where the other leg is 1 AU long. Because stellar parallaxes and distances all involve such skinny right triangles, a convenient trigonometric approximation can be used to convert parallaxes to distance.
The approximate distance is the reciprocal of the parallax: d ≃ 1 / p. For example, Proxima Centauri, whose parallax is 0.7687, is 1 / 0.7687 parsecs = 1.3009 parsecs distant. Stellar parallax is so small that its apparent absence was used as a scientific argument against heliocentrism during the early modern age, it is clear from Euclid's geometry that the effect would be undetectable if the stars were far enough away, but for various reasons such gigantic distances involved seemed implausible: it was one of Tycho Brahe's principal objections to Copernican heliocentrism that in order for it to be compatible with the lack of observable stellar parallax, there would have to be an enormous and unlikely void between the orbit of Saturn and the eighth sphere. James Bradley first tried to measure stellar parallaxes in 1729; the stellar movement proved too insignificant for his telescope, but he instead discovered the aberration of light and the nutation of Earth's axis, catalogued 3222 stars. Stellar parallax is most measured using annual parallax, defined as the difference in position of a star as seen from Earth and Sun, i.e. the angle subtended at a star by the mean radius of Earth's orbit around the Sun.
The parsec is defined as the distance. Annual parallax is measured by observing the position of a star at different times of the year as Earth moves through its orbit. Measurement of annual parallax was the first reliable way to determine the distances to the closest stars; the first successful measurements of stellar parallax were made by Friedrich Bessel in 1838 for the star 61 Cygni using a heliometer. Being difficult to measure, only about 60 stellar parallaxes had been obtained by the end of the 19th century by use of the filar micrometer. Astrographs using astronomical photographic plates sped the process in the early 20th century. Automated plate-measuring machines and more sophisticated computer technology of the 1960s allowed more efficient compilation of star catalogues. In the 1980s, charge-coupled devices replaced photographic plates and reduced optical uncertainties to one milliarcsecond. Stellar parallax remains the standard for calibrating other measurement methods. Accurate calculations of distance based on stellar parallax require a measurement of the distance from Earth to the Sun, now known to exquisite accuracy based on radar reflection off the surfaces of planets.
The angles involved in these calculations are small and thus difficult to measure. The nearest star to the Sun, Proxima Centauri, has a parallax of 0.7687 ± 0.0003 arcsec. This angle is that subtended by an object 2 centimeters in diameter located 5.3 kilometers away. In 1989 the satellite Hipparcos was launched for obtaining parallaxes and proper motions of nearby stars, increasing the number of stellar parallaxes measured to milliarcsecond accuracy a thousandfold. So, Hipparcos is only able to measure parallax angles for stars up to about 1,600 light-years away, a little more than one percent of the diameter of the Milky Way Galaxy; the Hubble telescope WFC3 now has a precision of 20 to 40 microarcseconds, enabling reliable distance measurements u
SIMBAD
SIMBAD is an astronomical database of objects beyond the Solar System. It is maintained by the Centre de données astronomiques de France. SIMBAD was created by merging the Catalog of Stellar Identifications and the Bibliographic Star Index as they existed at the Meudon Computer Centre until 1979, expanded by additional source data from other catalogues and the academic literature; the first on-line interactive version, known as Version 2, was made available in 1981. Version 3, developed in the C language and running on UNIX stations at the Strasbourg Observatory, was released in 1990. Fall of 2006 saw the release of Version 4 of the database, now stored in PostgreSQL, the supporting software, now written in Java; as of 10 February 2017, SIMBAD contains information for 9,099,070 objects under 24,529,080 different names, with 327,634 bibliographical references and 15,511,733 bibliographic citations. The minor planet 4692 SIMBAD was named in its honour. Planetary Data System – NASA's database of information on SSSB, maintained by JPL and Caltech.
NASA/IPAC Extragalactic Database – a database of information on objects outside the Milky Way maintained by JPL. NASA Exoplanet Archive – an online astronomical exoplanet catalog and data service Bibcode SIMBAD, Strasbourg SIMBAD, Harvard
Crux
Crux is a constellation located in the southern sky in a bright portion of the Milky Way. It is among the most distinguished constellations, as all of its four main stars have an apparent visual magnitude brighter than +2.8 though it is the smallest of all 88 modern constellations. Its name is Latin for cross, it is dominated by a cross-shaped or kite-like asterism, known as the Southern Cross. Predominating is the first-magnitude blue-white star of Alpha Crucis or Acrux, being the constellation's brightest and most southerly member. Crux is followed by four dominant stars, descending in clockwise order by magnitude: Beta, Gamma and Epsilon Crucis. Many of these brighter stars are members of the Scorpius–Centaurus Association, a large but loose group of hot blue-white stars that appear to share common origins and motion across the southern Milky Way; the constellation contains four Cepheid variables that are each visible to the naked eye under optimum conditions. Crux contains the bright and colourful open cluster known as the Jewel Box and, to the southwest includes the extensive dark nebula, known as the Coalsack Nebula.
The stars within Crux were known to the Ancient Greeks, where Ptolemy regarded them as part of the constellation Centaurus. They were visible as far north as Britain in the fourth millennium BC. However, the precession of the equinoxes lowered the stars below the European horizon, they were forgotten by the inhabitants of northern latitudes. By 400 AD, most of the stars in the constellation we now call Crux never rose above the horizon of Athens; the 15th century Venetian navigator Alvise Cadamosto made note of what was the Southern Cross on exiting the Gambia River in 1455, calling it the carro dell'ostro. However, Cadamosto's accompanying diagram was inaccurate. Historians credit João Faras for being the first European to depict it correctly. Faras sketched and described the constellation in a letter written on the beaches of Brazil on 1 May 1500 to the Portuguese monarch. Explorer Amerigo Vespucci seems to have observed not only the Southern Cross but the neighboring Coalsack Nebula on his second voyage in 1501–1502.
Another early modern description describing Crux as a separate constellation is attributed to Andreas Corsali, an Italian navigator who from 1515–1517 sailed to China and the East Indies in an expedition sponsored by King Manuel I. In 1516, Corsali wrote a letter to the monarch describing his observations of the southern sky, which included a rather crude map of the stars around the south celestial pole including the Southern Cross and the two Magellanic Clouds seen in an external orientation, as on a globe. Emery Molyneux and Petrus Plancius have been cited as the first uranographers to distinguish Crux as a separate constellation. Both authors, depended on unreliable sources and placed Crux in the wrong position. Crux was first shown in its correct position on the celestial globes of Petrus Plancius and Jodocus Hondius in 1598 and 1600, its stars were first catalogued separately from Centaurus by Frederick de Houtman in 1603. The constellation was adopted by Jakob Bartsch in 1624 and Augustin Royer in 1679.
Royer is sometimes wrongly cited as distinguishing Crux. Crux is bordered by the constellations Centaurus on the east and west, Musca to the south. Covering 68 square degrees and 0.165% of the night sky, it is the smallest of the 88 constellations. The three-letter abbreviation for the constellation, as adopted by the International Astronomical Union in 1922, is'Cru'; the official constellation boundaries, as set by Eugène Delporte in 1930, are defined by a polygon of four segments. In the equatorial coordinate system, the right ascension coordinates of these borders lie between 11h 56.13m and 12h 57.45m, while the declination coordinates are between −55.68° and −64.70°. The whole constellation is visible to observers south of latitude 25°N. In tropical regions Crux can be seen in the sky from April to June. Crux is opposite to Cassiopeia on the celestial sphere, therefore it cannot appear in the sky with the latter at the same time. For locations south of 34°S, Crux is circumpolar and thus always visible in the night sky.
Crux is sometimes confused with the nearby False Cross by stargazers. Crux is somewhat kite-shaped, it has a fifth star; the False Cross is diamond-shaped, somewhat dimmer on average, does not have a fifth star and lacks the two prominent nearby "Pointer Stars". Crux is visible from the southern hemisphere at any time of year, it is visible near the horizon from tropical latitudes of the northern hemisphere for a few hours every night during the northern winter and spring. For instance, it is visible from Cancun or any other place at latitude 25° N or less at around 10 pm at the end of April. There are 5 main stars. Due to precession, Crux will move closer to the South Pole in the next millennia, up to 67 degrees south declination for the middle of the constellation, but in AD 18000 or BC 8000 Crux will be and was less than 30 degrees south declination making it visible in Northern Europe. By AD 14000, it will be visible for most parts of Europe and the whole United States. In the Southern Hemisphere, the Southern Cross is used for navigation in much the same way that Polaris is used in the Northern Hemisphere.
Alpha and Gamma are
Kelvin
The Kelvin scale is an absolute thermodynamic temperature scale using as its null point absolute zero, the temperature at which all thermal motion ceases in the classical description of thermodynamics. The kelvin is the base unit of temperature in the International System of Units; until 2018, the kelvin was defined as the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. In other words, it was defined such that the triple point of water is 273.16 K. On 16 November 2018, a new definition was adopted, in terms of a fixed value of the Boltzmann constant. For legal metrology purposes, the new definition will come into force on 20 May 2019; the Kelvin scale is named after the Belfast-born, Glasgow University engineer and physicist William Thomson, 1st Baron Kelvin, who wrote of the need for an "absolute thermometric scale". Unlike the degree Fahrenheit and degree Celsius, the kelvin is not referred to or written as a degree; the kelvin is the primary unit of temperature measurement in the physical sciences, but is used in conjunction with the degree Celsius, which has the same magnitude.
The definition implies that absolute zero is equivalent to −273.15 °C. In 1848, William Thomson, made Lord Kelvin, wrote in his paper, On an Absolute Thermometric Scale, of the need for a scale whereby "infinite cold" was the scale's null point, which used the degree Celsius for its unit increment. Kelvin calculated; this absolute scale is known today as the Kelvin thermodynamic temperature scale. Kelvin's value of "−273" was the negative reciprocal of 0.00366—the accepted expansion coefficient of gas per degree Celsius relative to the ice point, giving a remarkable consistency to the accepted value. In 1954, Resolution 3 of the 10th General Conference on Weights and Measures gave the Kelvin scale its modern definition by designating the triple point of water as its second defining point and assigned its temperature to 273.16 kelvins. In 1967/1968, Resolution 3 of the 13th CGPM renamed the unit increment of thermodynamic temperature "kelvin", symbol K, replacing "degree Kelvin", symbol °K. Furthermore, feeling it useful to more explicitly define the magnitude of the unit increment, the 13th CGPM held in Resolution 4 that "The kelvin, unit of thermodynamic temperature, is equal to the fraction 1/273.16 of the thermodynamic temperature of the triple point of water."In 2005, the Comité International des Poids et Mesures, a committee of the CGPM, affirmed that for the purposes of delineating the temperature of the triple point of water, the definition of the Kelvin thermodynamic temperature scale would refer to water having an isotopic composition specified as Vienna Standard Mean Ocean Water.
In 2018, Resolution A of the 26th CGPM adopted a significant redefinition of SI base units which included redefining the Kelvin in terms of a fixed value for the Boltzmann constant of 1.380649×10−23 J/K. When spelled out or spoken, the unit is pluralised using the same grammatical rules as for other SI units such as the volt or ohm; when reference is made to the "Kelvin scale", the word "kelvin"—which is a noun—functions adjectivally to modify the noun "scale" and is capitalized. As with most other SI unit symbols there is a space between the kelvin symbol. Before the 13th CGPM in 1967–1968, the unit kelvin was called a "degree", the same as with the other temperature scales at the time, it was distinguished from the other scales with either the adjective suffix "Kelvin" or with "absolute" and its symbol was °K. The latter term, the unit's official name from 1948 until 1954, was ambiguous since it could be interpreted as referring to the Rankine scale. Before the 13th CGPM, the plural form was "degrees absolute".
The 13th CGPM changed the unit name to "kelvin". The omission of "degree" indicates that it is not relative to an arbitrary reference point like the Celsius and Fahrenheit scales, but rather an absolute unit of measure which can be manipulated algebraically. In science and engineering, degrees Celsius and kelvins are used in the same article, where absolute temperatures are given in degrees Celsius, but temperature intervals are given in kelvins. E.g. "its measured value was 0.01028 °C with an uncertainty of 60 µK." This practice is permissible because the degree Celsius is a special name for the kelvin for use in expressing relative temperatures, the magnitude of the degree Celsius is equal to that of the kelvin. Notwithstanding that the official endorsement provided by Resolution 3 of the 13th CGPM states "a temperature interval may be expressed in degrees Celsius", the practice of using both °C and K is widespread throughout the scientific world; the use of SI prefixed forms of the degree Celsius to express a temperature interval has not been adopted.
In 2005 the CIPM embarked on a programme to redefine the kelvin using a more experimentally rigorous methodology. In particular, the committee proposed redefining the kelvin such that Boltzmann's constant takes the exact value 1.3806505×10−23 J/K. The committee had hoped tha
Effective temperature
The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is used as an estimate of a body's surface temperature when the body's emissivity curve is not known; when the star's or planet's net emissivity in the relevant wavelength band is less than unity, the actual temperature of the body will be higher than the effective temperature. The net emissivity may be low due to surface or atmospheric properties, including greenhouse effect; the effective temperature of a star is the temperature of a black body with the same luminosity per surface area as the star and is defined according to the Stefan–Boltzmann law FBol = σTeff4. Notice that the total luminosity of a star is L = 4πR2σTeff4, where R is the stellar radius; the definition of the stellar radius is not straightforward. More rigorously the effective temperature corresponds to the temperature at the radius, defined by a certain value of the Rosseland optical depth within the stellar atmosphere.
The effective temperature and the bolometric luminosity are the two fundamental physical parameters needed to place a star on the Hertzsprung–Russell diagram. Both effective temperature and bolometric luminosity depend on the chemical composition of a star; the effective temperature of our Sun is around 5780 kelvins. Stars have a decreasing temperature gradient; the "core temperature" of the Sun—the temperature at the centre of the Sun where nuclear reactions take place—is estimated to be 15,000,000 K. The color index of a star indicates its temperature from the cool—by stellar standards—red M stars that radiate in the infrared to the hot blue O stars that radiate in the ultraviolet; the effective temperature of a star indicates the amount of heat that the star radiates per unit of surface area. From the warmest surfaces to the coolest is the sequence of stellar classifications known as O, B, A, F, G, K, M. A red star could be a tiny red dwarf, a star of feeble energy production and a small surface or a bloated giant or supergiant star such as Antares or Betelgeuse, either of which generates far greater energy but passes it through a surface so large that the star radiates little per unit of surface area.
A star near the middle of the spectrum, such as the modest Sun or the giant Capella radiates more energy per unit of surface area than the feeble red dwarf stars or the bloated supergiants, but much less than such a white or blue star as Vega or Rigel. To find the effective temperature of a planet, it can be calculated by equating the power received by the planet to the known power emitted by a blackbody of temperature T. Take the case of a planet at a distance D from the star, of luminosity L. Assuming the star radiates isotropically and that the planet is a long way from the star, the power absorbed by the planet is given by treating the planet as a disc of radius r, which intercepts some of the power, spread over the surface of a sphere of radius D; the calculation assumes the planet reflects some of the incoming radiation by incorporating a parameter called the albedo. An albedo of 1 means that all the radiation is reflected, an albedo of 0 means all of it is absorbed; the expression for absorbed power is then: P a b s = L r 2 4 D 2 The next assumption we can make is that the entire planet is at the same temperature T, that the planet radiates as a blackbody.
The Stefan–Boltzmann law gives an expression for the power radiated by the planet: P r a d = 4 π r 2 σ T 4 Equating these two expressions and rearranging gives an expression for the effective temperature: T = L 16 π σ D 2 4 Note that the planet's radius has cancelled out of the final expression. The effective temperature for Jupiter from this calculation is 88 K and 51 Pegasi b is 1,258 K. A better estimate of effective temperature for some planets, such as Jupiter, would need to include the internal heating as a power input; the actual temperature depends on atmosphere effects. The actual temperature from spectroscopic analysis for HD 209458 b is 1,130 K, but the effective temperature is 1,359 K; the internal heating within Jupiter raises the effective temperature to about 152 K. The surface temperature of a planet can be estimated by modifying the effective-temperature calculation to account for emissivity and temperature variation; the area of the planet that absorbs the power from the star is Aabs, some fraction of the total surface area Atotal = 4πr2, where r is the radius of the planet.
This area intercepts some of the power, spread over the surface of a sphere of radius D. We allow the planet to reflect some of the incoming radiation by incorporating a parameter a called the albedo. An albedo of 1 means that all the radiation is reflected, an albedo