Agouti coloration genetics
The agouti gene, the Agouti-signaling protein (ASIP) is responsible for variations in color in many species. Agouti works with extension to regulate the color of melanin which is produced in hairs. The agouti protein causes red to yellow pheomelanin to be produced, while the competing molecule α-MSH signals production of brown to black eumelanin. In wildtype mice, alternating cycles of agouti and α-MSH production cause agouti coloration. Each hair has bands of yellow which grew during agouti production, and black which grew during α-MSH production. Wildtype mice also have light-colored bellies. The hairs there are a creamy color the whole length because the agouti protein was produced the whole time the hairs were growing.
Both of these mice are viable yellow agouti avy; however, the mouse on the right does not express it due to epigenetic methylation.
An agouti dog, also called wolf sable
The pale areas on this bay horse are due to the pangaré trait
Image: Arthur, the cat
Agouti-signaling protein is a protein that in humans is encoded by the ASIP gene. It is responsible for the distribution of melanin pigment in mammals. Agouti interacts with the melanocortin 1 receptor to determine whether the melanocyte produces phaeomelanin, or eumelanin. This interaction is responsible for making distinct light and dark bands in the hairs of animals such as the agouti, which the gene is named after. In other species such as horses, agouti signalling is responsible for determining which parts of the body will be red or black. Mice with wildtype agouti will be grey-brown, with each hair being partly yellow and partly black. Loss of function mutations in mice and other species cause black fur coloration, while mutations causing expression throughout the whole body in mice cause yellow fur and obesity.
Proposed mechanism for the relationship between ectopic agouti expression and the development of yellow obese syndrome
These mice are genetically identical despite looking phenotypically different. The mouse on the left's mother was fed Bisphenol A (BPA) with a normal mouse diet and the mouse on the right's mother was fed BPA with a methyl-rich diet. The left mouse is yellow and obese, while the right mouse is brown and healthy.