Radial velocity
The radial velocity of an object with respect to a given point is the rate of change of the distance between the object and the point. That is, the radial velocity is the component of the object's velocity that points in the direction of the radius connecting the object and the point. In astronomy, the point is taken to be the observer on Earth, so the radial velocity denotes the speed with which the object moves away from or approaches the Earth. In astronomy, radial velocity is measured to the first order of approximation by Doppler spectroscopy; the quantity obtained by this method may be called the barycentric radial-velocity measure or spectroscopic radial velocity. However, due to relativistic and cosmological effects over the great distances that light travels to reach the observer from an astronomical object, this measure cannot be transformed to a geometric radial velocity without additional assumptions about the object and the space between it and the observer. By contrast, astrometric radial velocity is determined by astrometric observations.
Light from an object with a substantial relative radial velocity at emission will be subject to the Doppler effect, so the frequency of the light decreases for objects that were receding and increases for objects that were approaching. The radial velocity of a star or other luminous distant objects can be measured by taking a high-resolution spectrum and comparing the measured wavelengths of known spectral lines to wavelengths from laboratory measurements. A positive radial velocity indicates the distance between the objects was increasing. In many binary stars, the orbital motion causes radial velocity variations of several kilometers per second; as the spectra of these stars vary due to the Doppler effect, they are called spectroscopic binaries. Radial velocity can be used to estimate the ratio of the masses of the stars, some orbital elements, such as eccentricity and semimajor axis; the same method has been used to detect planets around stars, in the way that the movement's measurement determines the planet's orbital period, while the resulting radial-velocity amplitude allows the calculation of the lower bound on a planet's mass using the binary mass function.
Radial velocity methods alone may only reveal a lower bound, since a large planet orbiting at a high angle to the line of sight will perturb its star radially as much as a much smaller planet with an orbital plane on the line of sight. It has been suggested that planets with high eccentricities calculated by this method may in fact be two-planet systems of circular or near-circular resonant orbit; the radial velocity method to detect exoplanets is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an exoplanet as it orbits the star. When the star moves towards us, its spectrum is blueshifted, while it is redshifted when it moves away from us. By looking at the spectrum of a star—and so, measuring its velocity—it can be determined if it moves periodically due to the influence of an exoplanet companion. From the instrumental perspective, velocities are measured relative to the telescope's motion. So an important first step of the data reduction is to remove the contributions of the Earth's elliptic motion around the sun at ± 30 km/s, a monthly rotation of ± 13 m/s of the Earth around the center of gravity of the Earth-Moon system, the daily rotation of the telescope with the Earth crust around the Earth axis, up to ±460 m/s at the equator and proportional to the cosine of the telescope's geographic latitude, small contributions from the Earth polar motion at the level of mm/s, contributions of 230 km/s from the motion around the Galactic center and associated proper motions.
In the case of spectroscopic measurements corrections of the order of ±20 cm/s with respect to aberration. Proper motion Peculiar velocity Relative velocity Space velocity The Radial Velocity Equation in the Search for Exoplanets
Hipparcos
Hipparcos was a scientific satellite of the European Space Agency, launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial objects on the sky; this permitted the accurate determination of proper motions and parallaxes of stars, allowing a determination of their distance and tangential velocity. When combined with radial velocity measurements from spectroscopy, this pinpointed all six quantities needed to determine the motion of stars; the resulting Hipparcos Catalogue, a high-precision catalogue of more than 118,200 stars, was published in 1997. The lower-precision Tycho Catalogue of more than a million stars was published at the same time, while the enhanced Tycho-2 Catalogue of 2.5 million stars was published in 2000. Hipparcos' follow-up mission, was launched in 2013; the word "Hipparcos" is an acronym for HIgh Precision PARallax COllecting Satellite and a reference to the ancient Greek astronomer Hipparchus of Nicaea, noted for applications of trigonometry to astronomy and his discovery of the precession of the equinoxes.
By the second half of the 20th century, the accurate measurement of star positions from the ground was running into insurmountable barriers to improvements in accuracy for large-angle measurements and systematic terms. Problems were dominated by the effects of the Earth's atmosphere, but were compounded by complex optical terms and gravitational instrument flexures, the absence of all-sky visibility. A formal proposal to make these exacting observations from space was first put forward in 1967. Although proposed to the French space agency CNES, it was considered too complex and expensive for a single national programme, its acceptance within the European Space Agency's scientific programme, in 1980, was the result of a lengthy process of study and lobbying. The underlying scientific motivation was to determine the physical properties of the stars through the measurement of their distances and space motions, thus to place theoretical studies of stellar structure and evolution, studies of galactic structure and kinematics, on a more secure empirical basis.
Observationally, the objective was to provide the positions and annual proper motions for some 100,000 stars with an unprecedented accuracy of 0.002 arcseconds, a target in practice surpassed by a factor of two. The name of the space telescope, "Hipparcos" was an acronym for High Precision Parallax Collecting Satellite, it reflected the name of the ancient Greek astronomer Hipparchus, considered the founder of trigonometry and the discoverer of the precession of the equinoxes; the spacecraft carried a single all-reflective, eccentric Schmidt telescope, with an aperture of 29 cm. A special beam-combining mirror superimposed two fields of view, 58 degrees apart, into the common focal plane; this complex mirror consisted of two mirrors tilted in opposite directions, each occupying half of the rectangular entrance pupil, providing an unvignetted field of view of about 1°×1°. The telescope used a system of grids, at the focal surface, composed of 2688 alternate opaque and transparent bands, with a period of 1.208 arc-sec.
Behind this grid system, an image dissector tube with a sensitive field of view of about 38-arc-sec diameter converted the modulated light into a sequence of photon counts from which the phase of the entire pulse train from a star could be derived. The apparent angle between two stars in the combined fields of view, modulo the grid period, was obtained from the phase difference of the two star pulse trains. Targeting the observation of some 100,000 stars, with an astrometric accuracy of about 0.002 arc-sec, the final Hipparcos Catalogue comprised nearly 120,000 stars with a median accuracy of better than 0.001 arc-sec. An additional photomultiplier system viewed a beam splitter in the optical path and was used as a star mapper, its purpose was to monitor and determine the satellite attitude, in the process, to gather photometric and astrometric data of all stars down to about 11th magnitude. These measurements were made in two broad bands corresponding to B and V in the UBV photometric system.
The positions of these latter stars were to be determined to a precision of 0.03 arc-sec, a factor of 25 less than the main mission stars. Targeting the observation of around 400,000 stars, the resulting Tycho Catalogue comprised just over 1 million stars, with a subsequent analysis extending this to the Tycho-2 Catalogue of about 2.5 million stars. The attitude of the spacecraft about its center of gravity was controlled to scan the celestial sphere in a regular precessional motion maintaining a constant inclination between the spin axis and the direction to the Sun; the spacecraft spun around its Z-axis at the rate of 11.25 revolutions/day at an angle of 43° to the Sun. The Z-axis rotated about the sun-satellite line at 6.4 revolutions/year. The spacecraft consisted of two platforms and six vertical panels, all made of aluminum honeycomb; the solar array consisted of three deployable sections. Two S-band antennas were located on the top and bottom of the spacecraft, providing an omni-directional downlink data rate of 24 kbit/s.
An attitude and orbit-control subsystem ensured correct dynamic attitude control and determination during the operational lifetim
SIMBAD
SIMBAD is an astronomical database of objects beyond the Solar System. It is maintained by the Centre de données astronomiques de France. SIMBAD was created by merging the Catalog of Stellar Identifications and the Bibliographic Star Index as they existed at the Meudon Computer Centre until 1979, expanded by additional source data from other catalogues and the academic literature; the first on-line interactive version, known as Version 2, was made available in 1981. Version 3, developed in the C language and running on UNIX stations at the Strasbourg Observatory, was released in 1990. Fall of 2006 saw the release of Version 4 of the database, now stored in PostgreSQL, the supporting software, now written in Java; as of 10 February 2017, SIMBAD contains information for 9,099,070 objects under 24,529,080 different names, with 327,634 bibliographical references and 15,511,733 bibliographic citations. The minor planet 4692 SIMBAD was named in its honour. Planetary Data System – NASA's database of information on SSSB, maintained by JPL and Caltech.
NASA/IPAC Extragalactic Database – a database of information on objects outside the Milky Way maintained by JPL. NASA Exoplanet Archive – an online astronomical exoplanet catalog and data service Bibcode SIMBAD, Strasbourg SIMBAD, Harvard
Constellation
A constellation is a group of stars that forms an imaginary outline or pattern on the celestial sphere representing an animal, mythological person or creature, a god, or an inanimate object. The origins of the earliest constellations go back to prehistory. People used them to relate stories of their beliefs, creation, or mythology. Different cultures and countries adopted their own constellations, some of which lasted into the early 20th century before today's constellations were internationally recognized. Adoption of constellations has changed over time. Many have changed in shape; some became popular. Others were limited to single nations; the 48 traditional Western constellations are Greek. They are given in Aratus' work Phenomena and Ptolemy's Almagest, though their origin predates these works by several centuries. Constellations in the far southern sky were added from the 15th century until the mid-18th century when European explorers began traveling to the Southern Hemisphere. Twelve ancient constellations belong to the zodiac.
The origins of the zodiac remain uncertain. In 1928, the International Astronomical Union formally accepted 88 modern constellations, with contiguous boundaries that together cover the entire celestial sphere. Any given point in a celestial coordinate system lies in one of the modern constellations; some astronomical naming systems include the constellation where a given celestial object is found to convey its approximate location in the sky. The Flamsteed designation of a star, for example, consists of a number and the genitive form of the constellation name. Other star patterns or groups called asterisms are not constellations per se but are used by observers to navigate the night sky. Examples of bright asterisms include the Pleiades and Hyades within the constellation Taurus or Venus' Mirror in the constellation of Orion.. Some asterisms, like the False Cross, are split between two constellations; the word "constellation" comes from the Late Latin term cōnstellātiō, which can be translated as "set of stars".
The Ancient Greek word for constellation is ἄστρον. A more modern astronomical sense of the term "constellation" is as a recognisable pattern of stars whose appearance is associated with mythological characters or creatures, or earthbound animals, or objects, it can specifically denote the recognized 88 named constellations used today. Colloquial usage does not draw a sharp distinction between "constellations" and smaller "asterisms", yet the modern accepted astronomical constellations employ such a distinction. E.g. the Pleiades and the Hyades are both asterisms, each lies within the boundaries of the constellation of Taurus. Another example is the northern asterism known as the Big Dipper or the Plough, composed of the seven brightest stars within the area of the IAU-defined constellation of Ursa Major; the southern False Cross asterism includes portions of the constellations Carina and Vela and the Summer Triangle.. A constellation, viewed from a particular latitude on Earth, that never sets below the horizon is termed circumpolar.
From the North Pole or South Pole, all constellations south or north of the celestial equator are circumpolar. Depending on the definition, equatorial constellations may include those that lie between declinations 45° north and 45° south, or those that pass through the declination range of the ecliptic or zodiac ranging between 23½° north, the celestial equator, 23½° south. Although stars in constellations appear near each other in the sky, they lie at a variety of distances away from the Earth. Since stars have their own independent motions, all constellations will change over time. After tens to hundreds of thousands of years, familiar outlines will become unrecognizable. Astronomers can predict the past or future constellation outlines by measuring individual stars' common proper motions or cpm by accurate astrometry and their radial velocities by astronomical spectroscopy; the earliest evidence for the humankind's identification of constellations comes from Mesopotamian inscribed stones and clay writing tablets that date back to 3000 BC.
It seems that the bulk of the Mesopotamian constellations were created within a short interval from around 1300 to 1000 BC. Mesopotamian constellations appeared in many of the classical Greek constellations; the oldest Babylonian star catalogues of stars and constellations date back to the beginning in the Middle Bronze Age, most notably the Three Stars Each texts and the MUL. APIN, an expanded and revised version based on more accurate observation from around 1000 BC. However, the numerous Sumerian names in these catalogues suggest that they built on older, but otherwise unattested, Sumerian traditions of the Early Bronze Age; the classical Zodiac is a revision of Neo-Babylonian constellations from the 6th century BC. The Greeks adopted the Babylonian constellations in the 4th century BC. Twenty Ptolemaic constellations are from the Ancient Near East. Another ten have the same stars but different names. Biblical scholar, E. W. Bullinger interpreted some of the creatures mentioned in the books of Ezekiel and Revelation as the middle signs of the four quarters of the Zodiac, with the Lion as Leo, the Bull as Taurus, the Man representing Aquarius and the Eagle standing in for Scorpio.
The biblical Book of Job also
Stellar parallax
Stellar parallax is the apparent shift of position of any nearby star against the background of distant objects. Created by the different orbital positions of Earth, the small observed shift is largest at time intervals of about six months, when Earth arrives at opposite sides of the Sun in its orbit, giving a baseline distance of about two astronomical units between observations; the parallax itself is considered to be half of this maximum, about equivalent to the observational shift that would occur due to the different positions of Earth and the Sun, a baseline of one astronomical unit. Stellar parallax is so difficult to detect that its existence was the subject of much debate in astronomy for hundreds of years, it was first observed in 1806 by Giuseppe Calandrelli who reported parallax in α-Lyrae in his work "Osservazione e riflessione sulla parallasse annua dall’alfa della Lira". In 1838 Friedrich Bessel made the first successful parallax measurement, for the star 61 Cygni, using a Fraunhofer heliometer at Königsberg Observatory.
Once a star's parallax is known, its distance from Earth can be computed trigonometrically. But the more distant an object is, the smaller its parallax. With 21st-century techniques in astrometry, the limits of accurate measurement make distances farther away than about 100 parsecs too approximate to be useful when obtained by this technique; this limits the applicability of parallax as a measurement of distance to objects that are close on a galactic scale. Other techniques, such as spectral red-shift, are required to measure the distance of more remote objects. Stellar parallax measures are given in the tiny units of arcseconds, or in thousandths of arcseconds; the distance unit parsec is defined as the length of the leg of a right triangle adjacent to the angle of one arcsecond at one vertex, where the other leg is 1 AU long. Because stellar parallaxes and distances all involve such skinny right triangles, a convenient trigonometric approximation can be used to convert parallaxes to distance.
The approximate distance is the reciprocal of the parallax: d ≃ 1 / p. For example, Proxima Centauri, whose parallax is 0.7687, is 1 / 0.7687 parsecs = 1.3009 parsecs distant. Stellar parallax is so small that its apparent absence was used as a scientific argument against heliocentrism during the early modern age, it is clear from Euclid's geometry that the effect would be undetectable if the stars were far enough away, but for various reasons such gigantic distances involved seemed implausible: it was one of Tycho Brahe's principal objections to Copernican heliocentrism that in order for it to be compatible with the lack of observable stellar parallax, there would have to be an enormous and unlikely void between the orbit of Saturn and the eighth sphere. James Bradley first tried to measure stellar parallaxes in 1729; the stellar movement proved too insignificant for his telescope, but he instead discovered the aberration of light and the nutation of Earth's axis, catalogued 3222 stars. Stellar parallax is most measured using annual parallax, defined as the difference in position of a star as seen from Earth and Sun, i.e. the angle subtended at a star by the mean radius of Earth's orbit around the Sun.
The parsec is defined as the distance. Annual parallax is measured by observing the position of a star at different times of the year as Earth moves through its orbit. Measurement of annual parallax was the first reliable way to determine the distances to the closest stars; the first successful measurements of stellar parallax were made by Friedrich Bessel in 1838 for the star 61 Cygni using a heliometer. Being difficult to measure, only about 60 stellar parallaxes had been obtained by the end of the 19th century by use of the filar micrometer. Astrographs using astronomical photographic plates sped the process in the early 20th century. Automated plate-measuring machines and more sophisticated computer technology of the 1960s allowed more efficient compilation of star catalogues. In the 1980s, charge-coupled devices replaced photographic plates and reduced optical uncertainties to one milliarcsecond. Stellar parallax remains the standard for calibrating other measurement methods. Accurate calculations of distance based on stellar parallax require a measurement of the distance from Earth to the Sun, now known to exquisite accuracy based on radar reflection off the surfaces of planets.
The angles involved in these calculations are small and thus difficult to measure. The nearest star to the Sun, Proxima Centauri, has a parallax of 0.7687 ± 0.0003 arcsec. This angle is that subtended by an object 2 centimeters in diameter located 5.3 kilometers away. In 1989 the satellite Hipparcos was launched for obtaining parallaxes and proper motions of nearby stars, increasing the number of stellar parallaxes measured to milliarcsecond accuracy a thousandfold. So, Hipparcos is only able to measure parallax angles for stars up to about 1,600 light-years away, a little more than one percent of the diameter of the Milky Way Galaxy; the Hubble telescope WFC3 now has a precision of 20 to 40 microarcseconds, enabling reliable distance measurements u
Star catalogue
A star catalogue or star catalog, is an astronomical catalogue that lists stars. In astronomy, many stars are referred to by catalogue numbers. There are a great many different star catalogues which have been produced for different purposes over the years, this article covers only some of the more quoted ones. Star catalogues were compiled by many different ancient people, including the Babylonians, Chinese and Arabs, they were sometimes accompanied by a star chart for illustration. Most modern catalogues are available in electronic format and can be downloaded from space agencies data centres. Completeness and accuracy is described by the weakest apparent magnitude V and the accuracy of the positions. From their existing records, it is known that the ancient Egyptians recorded the names of only a few identifiable constellations and a list of thirty-six decans that were used as a star clock; the Egyptians called the circumpolar star "the star that cannot perish" and, although they made no known formal star catalogues, they nonetheless created extensive star charts of the night sky which adorn the coffins and ceilings of tomb chambers.
Although the ancient Sumerians were the first to record the names of constellations on clay tablets, the earliest known star catalogues were compiled by the ancient Babylonians of Mesopotamia in the late 2nd millennium BC, during the Kassite Period. They are better known by their Assyrian-era name'Three Stars Each'; these star catalogues, written on clay tablets, listed thirty-six stars: twelve for "Anu" along the celestial equator, twelve for "Ea" south of that, twelve for "Enlil" to the north. The Mul. Apin lists, dated to sometime before the Neo-Babylonian Empire, are direct textual descendants of the "Three Stars Each" lists and their constellation patterns show similarities to those of Greek civilization. In Ancient Greece, the astronomer and mathematician Eudoxus laid down a full set of the classical constellations around 370 BC, his catalogue Phaenomena, rewritten by Aratus of Soli between 275 and 250 BC as a didactic poem, became one of the most consulted astronomical texts in antiquity and beyond.
It contains descriptions of the positions of the stars, the shapes of the constellations and provided information on their relative times of rising and setting. In the 3rd century BC, the Greek astronomers Timocharis of Alexandria and Aristillus created another star catalogue. Hipparchus completed his star catalogue in 129 BC, which he compared to Timocharis' and discovered that the longitude of the stars had changed over time; this led him to determine the first value of the precession of the equinoxes. In the 2nd century, Ptolemy of Roman Egypt published a star catalogue as part of his Almagest, which listed 1,022 stars visible from Alexandria. Ptolemy's catalogue was based entirely on an earlier one by Hipparchus, it remained the standard star catalogue in the Arab worlds for over eight centuries. The Islamic astronomer al-Sufi updated it in 964, the star positions were redetermined by Ulugh Beg in 1437, but it was not superseded until the appearance of the thousand-star catalogue of Tycho Brahe in 1598.
Although the ancient Vedas of India specified how the ecliptic was to be divided into twenty-eight nakshatra, Indian constellation patterns were borrowed from Greek ones sometime after Alexander's conquests in Asia in the 4th century BC. The earliest known inscriptions for Chinese star names were written on oracle bones and date to the Shang Dynasty. Sources dating from the Zhou Dynasty which provide star names include the Zuo Zhuan, the Shi Jing, the "Canon of Yao" in the Book of Documents; the Lüshi Chunqiu written by the Qin statesman Lü Buwei provides most of the names for the twenty-eight mansions. An earlier lacquerware chest found in the Tomb of Marquis Yi of Zeng contains a complete list of the names of the twenty-eight mansions. Star catalogues are traditionally attributed to Shi Shen and Gan De, two rather obscure Chinese astronomers who may have been active in the 4th century BC of the Warring States period; the Shi Shen astronomy is attributed to Shi Shen, the Astronomic star observation to Gan De.
It was not until the Han Dynasty that astronomers started to observe and record names for all the stars that were apparent in the night sky, not just those around the ecliptic. A star catalogue is featured in one of the chapters of the late 2nd-century-BC history work Records of the Grand Historian by Sima Qian and contains the "schools" of Shi Shen and Gan De's work. Sima's catalogue—the Book of Celestial Offices —includes some 90 constellations, the stars therein named after temples, ideas in philosophy, locations such as markets and shops, different people such as farmers and soldiers. For his Spiritual Constitution of the Universe of 120 AD, the astronomer Zhang Heng compiled a star catalogue comprising 124 constellations. Chinese constellation names were adopted by the Koreans and Japanese. A large number of star catalogues were published by Muslim astronomers in the medieval Islamic world; these were Zij treatises, including Arzachel's Tables of Toledo, the Maragheh observatory's Zij-i Ilkhani and Ulugh Beg's Zij-i-Sultani.
Other fam
Auriga (constellation)
Auriga is one of the 88 modern constellations. Located north of the celestial equator, its name is the Latin word for “the charioteer”, associating it with various mythological beings, including Erichthonius and Myrtilus. Auriga is most prominent during winter evenings in the northern Hemisphere, along with the five other constellations that have stars in the Winter Hexagon asterism; because of its northern declination, Auriga is only visible in its entirety as far as 34° south. A large constellation, with an area of 657 square degrees, it is half the size of the largest constellation, Hydra, its brightest star, Capella, is an unusual multiple star system among the brightest stars in the night sky. Beta Aurigae is an interesting variable star in the constellation; because of its position near the winter Milky Way, Auriga has many bright open clusters in its borders, including M36, M37, M38, popular targets for amateur astronomers. In addition, it has one prominent nebula, the Flaming Star Nebula, associated with the variable star AE Aurigae.
In Chinese mythology, Auriga's stars were incorporated into several constellations, including the celestial emperors' chariots, made up of the modern constellation's brightest stars. Auriga is home to the radiant for the Aurigids, Zeta Aurigids, Delta Aurigids, the hypothesized Iota Aurigids; the first record of Auriga's stars was in Mesopotamia as a constellation called GAM, representing a scimitar or crook. However, this may have represented just the modern constellation as a whole. GAM in the MUL. APIN; the crook of Auriga shepherd. It was formed from most of the stars of the modern constellation. Bedouin astronomers created constellations that were groups of animals, where each star represented one animal; the stars of Auriga comprised a herd of goats, an association present in Greek mythology. The association with goats carried into the Greek astronomical tradition, though it became associated with a charioteer along with the shepherd. In Greek mythology, Auriga is identified as the mythological Greek hero Erichthonius of Athens, the chthonic son of Hephaestus, raised by the goddess Athena.
Erichthonius was credited to be the inventor of the quadriga, the four-horse chariot, which he used in the battle against the usurper Amphictyon, the event that made Erichthonius the king of Athens. His chariot was created in the image of the Sun's chariot, the reason Zeus placed him in the heavens; the Athenian hero dedicated himself to Athena and, soon after, Zeus raised him into the night sky in honor of his ingenuity and heroic deeds. Auriga, however, is sometimes described as Myrtilus, Hermes's son and the charioteer of Oenomaus; the association of Auriga and Myrtilus is supported by depictions of the constellation, which show a chariot. Myrtilus's chariot was destroyed in a race intended for suitors to win the heart of Oenomaus's daughter Hippodamia. Myrtilus earned his position in the sky when Hippodamia's successful suitor, killed him, despite his complicity in helping Pelops win her hand. After his death, Myrtilus's father Hermes placed him in the sky, yet another mythological association of Auriga is Theseus's son Hippolytus.
He was ejected from Athens after he refused the romantic advances of his stepmother Phaedra, who committed suicide as a result. He was revived by Asclepius. Regardless of Auriga's specific representation, it is that the constellation was created by the ancient Greeks to commemorate the importance of the chariot in their society. An incidental appearance of Auriga in Greek mythology is as the limbs of Medea's brother. In the myth of Jason and the Argonauts, as they journeyed home, Medea killed her brother and dismembered him, flinging the parts of his body into the sea, represented by the Milky Way; each individual star represents a different limb. Capella is associated with the mythological she-goat Amalthea, it forms an asterism with the stars Epsilon Aurigae, Zeta Aurigae, Eta Aurigae, the latter two of which are known as the Haedi. Though most associated with Amalthea, Capella has sometimes been associated with Amalthea's owner, a nymph; the myth of the nymph says that the goat's hideous appearance, resembling a Gorgon, was responsible for the Titans' defeat, because Zeus skinned the goat and wore it as his aegis.
The asterism containing the three goats had been a separate constellation. Before that, Capella was sometimes seen as its own constellation—by Pliny the Elder and Manilius—called Capra, Caper, or Hircus, all of which relate to its status as the "goat star". Zeta Aurigae and Eta Aurigae were first called the "Kids" by Cleostratus, an ancient Greek astronomer. Traditionally, illustrations of Auriga represent it as its driver; the charioteer has two kids under his left arm. However, depictions of Auriga have been inconsistent over the years; the reins in his right hand have been drawn as a whip, though Capella is always over his left shoulder and the Kids under his left arm. The 1488 atlas Hyginus deviated from this typical depiction by showing a four-wheeled cart driven by Auriga